
buddy-documentation

CREIC

Jan 11, 2023

QUICKSTART

1 About 1

2 Cluster Usage: Rules and Guidelines 3
2.1 General Etiquette . 3
2.2 Rules . 3
2.3 Guidelines . 3

3 Connecting to Buddy 5
3.1 Get an Account . 5
3.2 Connect Through Open Ondemand . 5
3.3 Connect Through SSH . 5

4 Open OnDemand 7
4.1 Access and Login . 7
4.2 Interactive Applications . 8
4.3 File Browser . 10
4.4 File Editor . 13
4.5 Terminal Access . 14
4.6 Job Management . 14
4.7 Job Composer . 16

5 Using the Terminal 23
5.1 Background . 23
5.2 Accessing the Terminal . 23
5.3 Terminal Basics . 25
5.4 Common Commands and Features . 30
5.5 Tips and Tricks . 37
5.6 Basic Bash Scripting . 38

6 Slurm 43
6.1 Terminology . 43
6.2 Commands . 44
6.3 Sbatch Parameters . 44

7 Common toolchains 45
7.1 Component versions in foss toolchain . 45
7.2 Component versions in intel toolchain . 45
7.3 Component versions in foss toolchain (deprecated versions) . 46
7.4 Component versions in intel toolchain (deprecated versions) . 46

8 Data Storage 47

i

8.1 Home Folder . 47
8.2 Project Space . 47
8.3 Scratch Storage . 47

9 Data Transfer 49
9.1 Using SFTP or SCP . 49
9.2 Using Github . 49
9.3 Using Globus . 49

10 Account and Software Requests 51
10.1 General Account Request . 51
10.2 Classroom Account Request . 51
10.3 Software Request . 52

11 Tips and Tricks 53
11.1 Slurm . 53
11.2 Python . 54

12 Overview 55

13 ANSYS 57

14 COMSOL 59

15 Anaconda 61
15.1 Example Script . 61

16 Gaussian 63
16.1 Example Script . 63

17 Jupyter/Python 65

18 R/RStudio 67

19 Stacks 69

20 Overview 71

21 Advanced Slurm 73

22 Array Jobs 75

23 Using Git and Github 77

24 Machine Learning 79

25 OMPI 81

26 OURRstore 83

ii

CHAPTER

ONE

ABOUT

Buddy is a supercomputer managed by CREIC and funded by the National Science Foundation. The following is a
break down of our system

Table 1: Buddy Nodes
Name Quantity Node Type Cores RAM Features
buddy.uco.edu 1 Login 2x8 64GB Open OnDemand
buddy-## 31 Compute 2x10 64GB Compute
buddy-high-mem-## 4 High Memory 2x10 128GB High Memory
Buddy-gpu-## 2 GPU 2x10 64GB Tesla K40
buddy-dtn-## 2 Data Transfer 2x8 64GB OFFN+Globus
Storage-ib 1 Storage 2x8 64GB Home/Project Storage

Buddy is being used for both research and education. Research includes projects on machine learning, particle transport,
micromixing, stochastic modeling, ecological modeling, bio-informatics, spread of disease, and much more! Buddy
also has JupyterLab which is heavily utilized in classroom environments. You can find grant details on the NSF site.

1

https://www.uco.edu/cms/research-centers/creic/
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1429702

buddy-documentation

2 Chapter 1. About

CHAPTER

TWO

CLUSTER USAGE: RULES AND GUIDELINES

2.1 General Etiquette

The cluster is a shared resource which we hope will be heavily utilized by anyone who could make use of it. We encour-
age users to take advantage of this resource while using judgment to avoid inconveniencing other users, overburdening
the cluster, or abusing it.

2.2 Rules

There are a few rules that must be followed to prevent overburdening or abusing the cluster.

2.2.1 1. Do not store sensative information on the cluster

Buddy is not yet HIPAA compliant. Do not store student grades, individually identifiable health informa-
tion, or other such sensative information on the cluster at this time.

2.2.2 2. Do not abuse cluster resources

Buddy is intended to support research and learning. Do not use the cluster to mine cryptocurrency, crack
passwords, spam emails, or other such intensive and inappropriate activity.

2.3 Guidelines

Here are a few guidelines for being considereate on the cluster. If you have any questions please contact administration.

2.3.1 1. Avoid running scripts directly

Buddy uses slurm to schedule jobs and allocate resources. This allows us to ensure every user has enough
resources for their application and everyone has the ability to uilize the cluster. Try to work within slurm
to allow us to keep buddy healthy and usable for everyone.

3

buddy-documentation

2.3.2 2. Avoid running jobs on the head node

If you are accessing buddy via a terminal and not using slurm (see guideline 1) you will initially be working
on the head node (hostname buddy). The head node is meant to manage the cluster while compute nodes
handle the workload. Please ssh into a compute node (hostname buddy-01,buddy-02,etc.).

2.3.3 3. Use globus to transfer large files onto the cluster

While it is acceptable to use open ondemand, sftp, or scp to transfer data onto the cluster, if the data is over
a certain size these methods can overburden the cluster causing a slowdown for all other users. For large
files, be sure to utilize our DTNs and Globus. See the data transfer section for more information.

2.3.4 4. Run jobs in an appropriate partition

Slurms jobs on Buddy are run within partitions that are optimized for different use cases. For most appli-
cations the general partition is appropriate, however, if your job requires a lot of memory use a high-mem
partition or if you exptect your job will need to run for longer than 5 days use a long partition. See slurm
partitions for more information.

2.3.5 5. Avoid allocating unnecessary recources

Feel free to allocate enough resources for your application but try not to allocate resources you are not going
to need. If you require a large quantity of resources use the appropriate partition or contact administration.

2.3.6 6. Avoid running unnessary jobs

Prefer running multiple tasks within one job over spawning multiple jobs when possible.

2.3.7 7. Avoid queueing an extreme number of jobs

Try to allow enough room in the queue for other users to run their jobs. If you have an application that
requires a large number of jobs use the appropriate partition or contact administration.

2.3.8 8. Be aware of software licenses

Some software on buddy requires a software license such as COMSOL. There are only so many licenses
which means only a few users can access that software at a time. Keep this in mind and try to give others
an opportunity to access the software as well.

4 Chapter 2. Cluster Usage: Rules and Guidelines

CHAPTER

THREE

CONNECTING TO BUDDY

3.1 Get an Account

Email administration at hpc@uco.edu and we will create an account for you. Please read the rules and guidelines before
using Buddy.

3.2 Connect Through Open Ondemand

If you prefer to use a browser you can access Buddy through https://buddy.uco.edu. This will take you to our Open
Ondemand page which makes it easy to setup jobs and use graphical software. See Open Ondemand for more infor-
mation.

3.3 Connect Through SSH

If you prefer a terminal you can connect to buddy using ssh. See Using the Terminal for more information.

5

mailto:hpc@uco.edu
https://buddy.uco.edu

buddy-documentation

6 Chapter 3. Connecting to Buddy

CHAPTER

FOUR

OPEN ONDEMAND

Open OnDemand is our new and improved interface for accessing HPC resources on Buddy. Open OnDemand is
developed and maintained by Ohio Supercomputing Center. You can access it by visiting https://buddy.uco.edu. This
document describes how to access and use OnDemand and it’s services.

4.1 Access and Login

OnDemand can be accessed by visiting https://buddy.uco.edu. You will login using the credentials provided by CREIC.
If you do not already have an account, or you require a password reset, please email hpc@uco.edu for assistance. Please
note that while the username may match yours at uco, this account is not connected to your UCO credentials.

7

https://buddy.uco.edu
https://buddy.uco.edu
mailto:hpc@uco.edu

buddy-documentation

4.2 Interactive Applications

Buddy has a number of interactive applications available for use. You can access them via the interactive apps tab, or
by clicking “My Interactive Sessions”

As an example, we will access Jupyter. Below is what the application will most likely look like. We will touch on each
of the available options, including the advanced tab.

8 Chapter 4. Open OnDemand

buddy-documentation

4.2.1 Queue

Allows you to select the queue your application will run on. General is typical for most jobs. GPU and High Memory
are available for specialized work loads, but there are a limited number of nodes with these resources.

4.2. Interactive Applications 9

buddy-documentation

4.2.2 Number of Hours

This is the number of hours your interactive application will run for. Please note there is a 48 hour limit on all interactive
app jobs. If you require longer runtimes, please utilize a SLURM script.

4.2.3 Number of Cores

Number of cores for your job. You can reserve up to 20, but only use the minimum required. Two is typically best for
classroom jobs, and most research jobs. Twenty will reserve the entire node for just that application. This should only
be done when absolutely needed.

4.2.4 Version

This selects the version of the application you wish to run. Most often, you will want to pick the latest version, unless
you have some need that requires an older revision.

4.2.5 Additonal Modules

Additional modules can be added here. This utilizes LMOD, and will automatically load the user supplied list of
modules. Please be sure your modules toolchain version matches the toolchain of your software version. You can read
more in the module section about toolchains.

4.2.6 Other Options

Certain applications contain other options. For example, Jupyter let’s you choose between a Lab or Notebook session.
Jupyter also offers ready to select module groups like “Data Science”.

4.3 File Browser

Ondemand offers a built in file browser. You can access it by going to Files>Home Directory. The file browser has
options to upload files, edit text files, general file management, and more all within the web browser! Applications like
Filezilla are no longer needed to move data to and from Buddy.

10 Chapter 4. Open OnDemand

buddy-documentation

4.3.1 Top Menu

Most file tasks can be performed via the menu in the upper left.

• Open in Terminal: Opens your current folder in a terminal via a new tab. The side arrow allows you to select
the cluster you want to open the terminal on. At this time, there is only Buddy. So this option is not needed.

• New File: Opens a dialogue to create a new file in the current folder

• New Directory: Opens a dialogue to create a new folder in the current folder

• Upload: Opens a dialogue to upload desired files or folders

• Download: Downloads files or folders that have been selected

• Copy/Move: Opens a dialogue to copy or move files or folders that have been selected

• Delete: Deletes selected files or folders.

Warning: File deletion is permanent on Buddy, both in the file browser and terminal! There is no “trash”. In
addition, files cannot be recovered due to the nature of Buddy.

4.3. File Browser 11

buddy-documentation

4.3.2 Navigation Menu

The navigation menu allows has additional navigation options that some users may find useful

• Up Arrow: Goes up a directory

• Path Bar: Shows the path to your present working directory

• Change Directory: Allows for navigation to a specific folder by providing a path

• Copy Path: Copies the path to your present working directory

• Show Owner/Mode: Shows file and folder permissions

• Show dotfiles: Shows hidden files and folders

• Filter: Filter current files and folders by name

4.3.3 File Context Menu

The file context menu provides a number of operations that mose users will find useful

• View: Opens text files for viewing in a new window

• Edit: Opens files in the OnDemand text editor in a new tab

• Rename: Opens a dialogue to rename files

• Download: Downloads the file

12 Chapter 4. Open OnDemand

buddy-documentation

4.4 File Editor

OnDemand has a built in file editor that you can use to modify any text based file. This is perfect for modifying scripts,
input data, and a number of other tasks.

There are a number of options available within the editor

4.4.1 File Options

• Save: Saves your currently open file

• Path: Shows the name and location of the file you currently have open

4.4.2 Editor Options

• Key Bindings: Allows for special key bindings

– Default: This option is best for most users as this is the standard set of key bindings to which desktop users
are accustom.

– Vim: VIM types bindings, including common modes such as command, insert, replace, and block. This
mode is not recommended unless you use VIM.

– Emacs: Emacs type bindings. This mode is not recommended unless you use Emacs.

• Font Size: Size of font displayed within the editor

• Mode: This is typically automatically selected based on your file extension. The mode controls syntax high-
lighting and can help to discern elements when performing tasks like writing a script.

• Theme: Changes how your text editor looks. Both light and dark themes are available.

• Word Wrap: Marks whether to wrap words. This prevents having to scroll horizontally for extremely long lines.

4.4. File Editor 13

buddy-documentation

4.5 Terminal Access

A terminal can be accessed by going to Clusters>Buddy Shell Access. This terminal is web based will open a terminal
in a new window. This means that applications like Putty are no longer needed to access Buddy.

Much like the text editor, the terminal also has a theme option. To learn more about bash and common Linux commands,
see our guide on the terminal and Slurm.

4.6 Job Management

Jobs Management can be accessed by going to Jobs>Active Jobs. This allows users to manage their slurm jobs, as
well as see jobs from other users running on the cluster. Please see our Slurm section for more information about jobs.
Please note that this application is paginated, and you may need to mark to show more entires or click through available
pages using the navigation at the bottom.

14 Chapter 4. Open OnDemand

buddy-documentation

4.6.1 View Options

There are a few options to adjust your current view within the Active Jobs application.

• Your Jobs/All Jobs: Toggles wether you want to view only your jobs, or all jobs on the cluster

• All Clusters/Buddy: Chooses which cluster’s active jobs will show. Since there is only one cluster, Buddy, this
option is currently irrelevant.

• Filter: Filter displayed jobs via keywords

• Show ## Entries: Change the number of entries to show on a single page

4.6.2 Job Context Menu

All jobs have an associated context menu that can be seen be clicking the arrow next to the job. Note the below
screenshot is what will be seen for self owned jobs. Jobs owned by other users will be lacking many of these options
as you don’t have permission to modify them.

• Red Trash Bin: Cancel your current job

4.6. Job Management 15

buddy-documentation

• Job Status: Status of your current Slurm job. Possible states include Running, Pending, Completing, and Can-
celled. Please see our page on Slurm for more information.

• Open in File Manager: Opens the job working directory in the OnDemand file browser. This makes tasks such
as viewing job output more convienent.

• Open in Terminal: Opens the job working directory in the OnDemand terminal

• Delete: Cancels the job selected

4.7 Job Composer

The Job Composer can be accessed by going to Jobs>Job Composer and open in a new tab. Job Composer allows for
creating and running slurm jobs from within your browser. Some users may find this more convienent than using the
terminal to run slurm jobs.

4.7.1 Overview

16 Chapter 4. Open OnDemand

buddy-documentation

The Job Composer’s main screen offers a number of options.

• +New Job: Create a new job from one of the following

– From Default Template: Creates a new job from the default template

– From Template: Creates a new job from a pre-defined template

– From Specified Path: Creates a new job from files within a specified directory

– From Selected Jobs: Copies the currently selected job into a new job.

• Create Template: Create a new template from the current job. There are a few options that need set.

– Path: Path of folder to be used to generate the template

– Name: Name of the job template

– Cluster: Name of the cluster the job will run on by default. Buddy is the only cluster, so this option is
irrelevant.

– Notes: Notes for the job written in HTMl markup.

• Edit Files: Open the currently selected job in the file browser to edit and manage job files. You can use this to
upload new inoput files or modify job scripts

• Job Options: Opens a dialogue within your current window to set various job options

– Name: Name of your job

– Cluster: Name of the cluster your job will run on. Since we only have one cluster, Buddy, this option is
irrelevant.

– Specify Job Script: Specify the name of the script to be executed when the submit button is pressed within
the job composer.

– Account: We do not currently use accounting. Please leave this field blank.

– Job Array Specification: Please see Advanced Slurm topics for more information on configuring arrays.

• Open Terminal: Open the current job’s folder in the the terminal. This is a faster option for managing job files
for those familiar with bash.

• Submit: Submit the selected job to the cluster

• Stop: Cancel the running of a selected job

• Delete: Delete the current job from job composer

• Job Details: Details regarding the current job. Use the “Job Options” button to modify these fields.

• Submit Script: Details of the script being used. Options in this field include

– Open Editor: Opens the job script in the file editor

– Open Terminal: Opens the job folder in the terminal

– Open Dir: Opens the job folder in the file browser

4.7. Job Composer 17

buddy-documentation

4.7.2 Creating Job From Template

Here we will look at creating a job from a template. The process is roughly the same for a default template as well. This
example will use Gaussian. Please see the Software and Slurm sections of the documentation for details on writing
Slurm scripts and how to use your desired application.

1. Select “From Template” from the “New Job” menu.

2. From the template screen, select the desired template and click “Create New Job” from the right hand pane. For
this example, we will select the Gaussian template. Be sure to also set the desired job name. We will ignore the
Cluster option, as Buddy is currently the only available cluster.

3. We will now need to make some modifications to our script and upload the input file we want. Select your job
and click “Edit Files” on the left side. This will open the file browser in a new window. Upload your input files
and edit the Slurm script accordingly. Please see the File Browser and File Editor section of the documentation.
Please also see the Slurm documentation for writing your script.

18 Chapter 4. Open OnDemand

buddy-documentation

4. Once everything is setup, we can click submit job. If everything goes as expected, you should see the job pass
through several states, eventually reaching completion. To stop a job, simply press the stop button. Output can be
viewed by pressing the “Open Dir” button in the bottom right, or using the edit button in the upper left. Should
a job not complete as expected.

4.7.3 Modifying Job Options

Certain job options can be modifying by selecting the desired job and clicking “Job Options”.

Job options will be opened within your current window.

4.7. Job Composer 19

buddy-documentation

• Name: Name of your job

• Cluster: Name of the cluster your job will run on. Since we only have one cluster, Buddy, this option is irrelevant.

• Specify Job Script: Specify the name of the script to be executed when the submit button is pressed within the
job composer.

• Account: We do not currently use accounting. Please leave this field blank.

• Job Array Specification: Please see Advanced Slurm topics for more information on configuring arrays.

You can reset any changes made with the reset button, or by clicking back.

4.7.4 Saving and Managing Templates

User’s can save and manage Templates under the “Templates” tab of the Job Composer. System provided Job Composer
templates are only available for a limited number of software. We are currently working to add more to OnDemand.
Generic Slurm templates are available under the Slurm section and specific templates are available in the SOFTWARE
section.

New templates can be created either by starting one from scratch or by copying a current template. Template files can
aslo be modified from this view.

20 Chapter 4. Open OnDemand

buddy-documentation

Note: The scope of this section is extremely limited. A more in depth walk through of utilizing the template feature
will eventually be provided under the ADVANCED section of this documentation.

• New Template/Copy Template: Create or copy a template for use.

– Path: Path that contains your desired default tmeplate files. They should include a runtime script, relative
input files, and manifest.yml. Please note the manifest.yml, while important, is nopt covered in this docu-
ment. Please view another templates folder to see how this is constructed or email UCO’s HPC support.

– Name: Name of the template

– Cluster: Name of the cluster your job will run on. Since we only have one cluster, Buddy, this option is
irrelevant.

– Notes: Notes about the job script template.

• Delete: Delete a selected template. You may only delete user created templates as System Templates are managed
by CREIC.

4.7. Job Composer 21

buddy-documentation

22 Chapter 4. Open OnDemand

CHAPTER

FIVE

USING THE TERMINAL

The Linux command line is one of two methods for accessing Buddy resources. It’s features, power, and flexibility are
essential for those wishing to properly utilize the cluster. While the navigation terminal may seem confusing, many of
it’s aspects are straightforward.

5.1 Background

When computer first came about, one of the first operating systems to arrive was Unix. It was designed to run as
a multi-user system on mainframe computers, with users connecting to it remotely via individual terminals. These
terminals were extremely simplistic and consisted primarily of a keyboard and screen.

Compared to graphics, text is very light on resources. Because of this, older machines could run dozens of terminals
even across the slowest of networks. Despite the nature of terminals, users were still able to interact with programs
quickly and efficiently. The commands were also kept very short to reduce the number of keystrokes needed, which
sped up the use of the terminal even more. This speed and efficiency is one reason why this text interface is still widely
used today.

When logged into a Unix mainframe via a terminal users still had to manage the sort of file management tasks that you
might now perform with a mouse and a couple of windows. Whether creating files, renaming them, putting them into
subdirectories or moving them around on disk, users could do everything entirely with a textual interface.

Buddy utilizes an operating system called Linux. While it bears some similarities to Unix, it is most definitely not
identical and has many major differences. Buddy’s terminal operates using something called “Bash” for users to com-
municate via the command line. Bash is widely used on Linux systems, and is well documented. This page will cover
some basic functions of Bash, including some simple scripting.

5.2 Accessing the Terminal

The terminal can be accessed in one of two ways. One is via the web browser, and the other is via SSH. Upon opening,
you will be greeted with a black screen and blinking cursor.

23

buddy-documentation

5.2.1 Web browser Access

The easiest way to access the terminal is via OnDemand. Once you are logged in, you can access the terminal by going
to Clusters>Buddy Shell Access. This will open up a terminal for you in a new window.

You will see the terminal in your web browser once you are logged in

5.2.2 SSH Access

SSH access is also available for users who desire to use a preferred terminal emulator. You can ssh into buddy by
connecting to username@buddy.uco.edu. There are few applications available to utilize SSH

Note: Please read the associated documentation for each of these softwares if you desire to use them. Users uncom-
fortable with this method of access are recommended to use the built in OnDemand terminal mentioned above for SSH
and the OnDemand file browser for uploading and downloading files to Buddy.

• Windows

24 Chapter 5. Using the Terminal

buddy-documentation

– Powershell: Powershell is a built in Windows terminal emulator that uses the Powershell language. You can
access it via your start menu and connect Buddy by using the command ssh username@buddy.uco.edu.
You can exit the ssh prompt by typing exit.

– Putty: Putty is a popular option for Windows and can be downloaded from the Putty website.

– MobaXTerm: MobaXTerm is another common software and can be downloaded form the Moba website.

– WinSCP: WinSCP is a software that is not for SSH, but rather file transfer over SCP.

• OSX

– Terminal: OSX has it’s own built in terminal emulator. It can be accessed from your utility folder and you
can connect to Buddy with the command ssh username@buddy.uco.edu. You can exit the ssh prompt
by typing exit.

– Finder: Your file browser in Mac OS can be used to directly connect Buddy for file transfer. You will want
to connect to sftp://username@buddy.uco.edu.

Warning: Filezilla is no longer recommended as it’s installer comes bundled with other software! While the
bundled offer is not malicious, this can be considered undesireable as the bundled application is installed in a
deceptive manner and can interfere with your anti-virus.

5.3 Terminal Basics

This section will teach everyday commands that will be used regularly in the terminal. On a terminal, you don’t have a
file browser, word, or any other “GUI” application. But that doesn’t mean it is difficult to use. While there is a learning
curve, once common commands are memorized, it’s as easy as riding a bike.

5.3.1 Navigation

Navigating files and folders is a fundamental aspect of using any computer. But within the terminal, we are not auto-
matically shown what we want to see. We have to be more explicit.

Let’s start by viewing the contents of our current folder using the “LiSt” command.

[skelting1@buddy ~]$ ls
batchjob.sh Data_Folder_01 Data Folder 02 slurm_output.txt

You can view the contents of a directory by passing a file path to the “LiSt”

[skelting1@buddy ~]$ ls Data_Folder_01
data-set-01.dat data-set-02.dat meta

Let’s pass a “List” option to our “LiSt” command.

[skelting1@buddy ~]$ ls -l
total 4
-rw-r--r-- 1 skelting1 skelting1 635 Apr 21 13:13 batchjob.sh
drwxr-xr-x 2 skelting1 skelting1 10 Apr 21 11:37 Data_Folder_01
drwxr-xr-x 2 skelting1 skelting1 10 Apr 21 11:37 Data Folder 02
-rw-r--r-- 1 skelting1 skelting1 0 Apr 21 11:37 slurm_output.txt

5.3. Terminal Basics 25

https://docs.microsoft.com/en-us/powershell/scripting/learn/remoting/ssh-remoting-in-powershell-core?view=powershell-7.2
https://www.putty.org/
https://mobaxterm.mobatek.net/
https://winscp.net/eng/index.php
https://www.servermania.com/kb/articles/ssh-mac/
https://support.apple.com/guide/mac-help/connect-mac-shared-computers-servers-mchlp1140/mac

buddy-documentation

There’s a lot of information to unpack here. For now, we will share that the date and time shows when a file was
modified last.

This is all well and good, but where are we? Let’s “Print (our) Working Directory”

[skelting1@buddy ~]$ pwd
/home/skelting1/

This path is our home folder. The username will of course differ. Your home folder is where all of your files will be
stored on Buddy. When you login, this is the first folder you will see. But what if we want to access our other folders?
Let’s “Change Directory”

[skelting1@buddy ~]$ cd Data_Folder_01
[skelting1@buddy Data_Folder_01]$ pwd
/home/skelting1/Data_Folder_01

Warning: Linux is CaSe SeNsItIvE! Failure to match case will result in your commands not working.

You’ll notice our prompt changes to show our current folder. Looking even closer, you’ll notice we started with a ~ as
our current folder. This is because the ~ is a special symbol to represent our home folder. We can even get back into
the home folder by changing our directory to it.

[skelting1@buddy Data_Folder_01]$ cd ~
[skelting1@buddy ~]$ pwd
/home/skelting1/

Neat! But what if we are several folders in and just want to go up a folder? Let’s see how that would work.

[skelting1@buddy ~]$ ls
batchjob.sh Data_Folder_01 Data Folder 02 slurm_output.txt
[skelting1@buddy ~]$ cd Data_Folder_01
[skelting1@buddy Data_Folder_01]$ ls
data-set-01.dat data-set-02.dat meta
[skelting1@buddy Data_Folder_01]$ cd meta
[skelting1@buddy meta]$ ls
info.json
[skelting1@buddy meta]$ pwd
/home/skelting1/~/Data_Folder_01/meta

One option for going up a folder is to give our cd command the absolute path of the parent directory: /home/
skelting1/Data_Folder_01/ but, this is highly inefficient. Let’s examine another special folder. We will need
to add another option to our “LiSt” command to see what they are.

[skelting1@buddy meta]$ ls -a
. .. info.json

The “All” option for ls shows us some directories we couldn’t see before. One is a directory named . and the other is a
directory named represents the current directory, and .. represents the directory above it. Going up a directory
is as easy as

[skelting1@buddy meta]$ cd ..
[skelting1@buddy Data_Folder_01]$

26 Chapter 5. Using the Terminal

buddy-documentation

With the .. relative path in your tool-belt you can go anywhere by building up a longer path. For example, to jump
from a directory to a sibling directory, you could go up a directory and then down with two two separate commands or
you can jump directly using one command

[skelting1@buddy meta]$ pwd
/home/skelting1/Data_Folder_01/meta
[skelting1@buddy meta]$ cd ../../Data_Folder_02
[skelting1@buddy Data_Folder_02]$ pwd
/home/skelting1/Data_Folder_02

You’ll notice if you try to change directory to . that nothing really happens. This is the intended behavior as we are
changing directory to our current directory. Which of course leaves us in the same place! Let’s go back to our home
folder and review a special case you will most likely encounter.

[skelting1@buddy ~]$ ls
batchjob.sh Data_Folder_01 Data Folder 02 slurm_output.txt

You’ll notice that one of our folder names has spaces in it. This is generally not recommended from a convenience
standpoint, but it happens often for one reason or another. If we try to cd into this folder, odd things happen.

[skelting1@buddy ~]$ cd Data Folder 02
-bash: cd: Data: No such file or directory

Our cd command only wants to take the first argument. In order to read spaces, we have to use what’s called an “Escape
Character”. This is simply a backslash \, not to be confused with the forward-slash / we use for paths. So how is the
escape character used?

[skelting1@buddy ~]$ cd Data\ Folder\ 02
[skelting1@buddy Data Folder 02]$

This may not seem intuitive to some users, so there is also the option of putting the path in quotes.

[skelting1@buddy ~]$ cd "Data Folder 02"
[skelting1@buddy Data Folder 02]$

Note: You may find yourself annoyed by having to always type out these paths completely. Thankfully, you can use
the Tab key to auto-complete. If you press tab and nothing happens, either there is nothing beginning with that name,
there are more than one items starting with that particular set of charachters, or you’ve made a syntax error. You may
try hitting Tab three times to show available options. Alternatively, backspace over your command and type ls and/or
pwd to ensure you are in the right directory and the item is actually in there.

5.3.2 Creating and Deleting Files and Directories

Often, it is needed to make a new directory. To do this we use the “MaKe DIRectory” command. As previously
discussed, it is suggested to not name directories with spaces.

[skelting1@buddy ~]$ mkdir Data_Folder_03
[skelting1@buddy ~]$ ls
batchjob.sh Data_Folder_01 Data Folder 02 Data_Folder_03 slurm_output.txt

To delete a directory, we simply use the “ReMove DIRectory” command.

5.3. Terminal Basics 27

buddy-documentation

[skelting1@buddy ~]$ rmdir Data_Folder_03
[skelting1@buddy ~]$ ls
batchjob.sh Data_Folder_01 Data Folder 02 slurm_output.txt

This isn’t always the best option. Especially considering it fails to work of your directory contains file within it. For
that reason, the “ReMove” command is generally recommended. This works for both files and directories. Notice that
to remove a directory, we must pass a “Recursive” option, but a file doesn’t require it.

[skelting1@buddy ~]$ ls
batchjob.sh Data_Folder_01 Data Folder 02 Data_Folder_03 slurm_output.txt
[skelting1@buddy ~]$ rm slurm_output.txt
[skelting1@buddy ~]$ ls
batchjob.sh Data_Folder_01 Data Folder 02 Data_Folder_03
[skelting1@buddy ~]$ rm -r Data_Folder_03
[skelting1@buddy ~]$ ls
batchjob.sh Data_Folder_01 Data Folder 02

If you want to delete several similarly named files, like output files, you can replace the part that differs between the
paths by a star which is called a wildcard.

[skelting1@buddy ~]$ ls
data-001.out data-002.out data-003.out data-004.out foobar.out example.txt
[skelting1@buddy ~]$ rm data-*.out
[skelting1@buddy ~]$ ls
foobar.out example.out

Warning: The rm command is permanent!! There is no trashcan to restore files from, and data recovery is not
possible. Please be careful when using this command. Remember, think twice, hit enter once.

You may notice that if the directory is filled with files, it may prompt you about deleting each and every file. If this is
the case, we can use the “Force” option.

[skelting1@buddy ~]$ rm -r -f Data_Folder_03

or

[skelting1@buddy ~]$ rm -rf Data_Folder_03

There may be instances when you want to create a blank file. Do do this, we use the touch command

[skelting1@buddy ~]$ touch script.sh
[skelting1@buddy ~]$ ls
batchjob.sh Data_Folder_01 Data Folder 02 script.sh slurm_output.txt

28 Chapter 5. Using the Terminal

buddy-documentation

5.3.3 Copy, Move, and Rename

Often times, we want to replicate files and folders on our system. To do this, we use the “CoPy” command. For copying
directories that contain files, we also want to include a “Recursive” option. When using copy, we will first specify the
source followed by the destination

[skelting1@buddy ~]$ cp script.sh copy-of-script.sh
[skelting1@buddy ~]$ ls
batchjob.sh copy-of-script.sh Data_Folder_01 Data Folder 02 script.sh slurm_output.
→˓txt
[skelting1@buddy ~]$ cp -r Data_Folder_01 Data_Folder_04
[skelting1@buddy ~]$ ls
batchjob.sh copy-of-script.sh Data_Folder_01 Data Folder 02 Data_Folder_04 script.
→˓sh slurm_output.txt

We can also copy files or directories into other directories

[skelting1@buddy ~]$ cp script.sh Data_Folder_01/script.sh
[skelting1@buddy ~]$ ls Data_Folder_01
data-set-01.dat data-set-02.dat meta script.sh

The “MoVe” command is used to move files from one place to another. Its behavior can change depending on what
paths you provide and what those paths go to.

If you provide two paths and the first one exist while the second one does not, the first file will be renamed to the second.

[skelting1@buddy ~]$ ls
batchjob.sh copy-of-script.sh Data_Folder_01 Data Folder 02 script.sh slurm_output.txt
[skelting1@buddy ~]$ mv script.sh foobar.sh
[skelting1@buddy ~]$ ls
batchjob.sh copy-of-script.sh Data_Folder_01 Data Folder 02 foobar.sh slurm_output.txt

Note: If foobar.sh already exists, the command will throw an error. Using the -f flag will allow you to overwrite
foobar.sh

This works for directories as well with one exception. If the last path provided is an existing directory, whatever is at
all of the other paths will be moved into the directory

[skelting1@buddy ~]$ ls
batchjob.sh copy-of-script.sh Data_Folder_01 Data Folder 02 foobar.sh slurm_output.txt
[skelting1@buddy ~]$ mv batchjob.sh copy-of-script.sh foobar.sh slurm_output.txt Data_
→˓Folder_01
[skelting1@buddy ~]$ ls
Data_Folder_01 Data Folder 02
[skelting1@buddy ~]$ ls Data_Folder_01
data-set-01.dat data-set-02.dat meta script.sh batchjob.sh copy-of-script.sh foobar.
→˓sh slurm_output.txt

You can also use wildcards to move similarly named paths as well. If you wanted to move your .dat files back out of
Data_Folder_1 and into the current working directory you could do the following

[skelting1@buddy ~]$ ls Data_Folder_01
data-set-01.dat data-set-02.dat meta script.sh batchjob.sh copy-of-script.sh foobar.

(continues on next page)

5.3. Terminal Basics 29

buddy-documentation

(continued from previous page)

→˓sh slurm_output.txt
[skelting1@buddy ~]$ mv Data_Folder_01/*.dat .
[skelting1@buddy ~]$ ls
data-set-01.dat data-set-01.dat Data_Folder_01 Data Folder 02

Note: Notice the use of the special . path to reference the current working directory

5.4 Common Commands and Features

5.4.1 File Viewing/Editing and Pipes

Viewing

Viewing the contents of a file is a common task so there are a couple of commands to do so. The “conCATenate”
command is used to display the entire contents of a file

[skelting1@buddy ~]$ cat data-set-01.dat
key1 value1
key2 value2
key3 value3

The name “conCATenate” comes from its ability to join the output of files together. This is evident when viewing the
contents of several files at once

[skelting1@buddy ~]$ cat data-set-01.dat data-set-02.dat
key1 value1
key2 value2
key3 value3
other data1
other data2
other data3

You could have also used the wildcard character here: cat *.dat

If you just want to view the beginning or end of a file you can use the head and tail commands respectively. The -n
flag specify how many lines you would like to see; defaulting to 10 if the -n flag is omitted

[skelting1@buddy ~]$ tail -n 2 data-set-01.dat
key2 value2
key3 value3
[skelting1@buddy ~]$ head -n 2 data-set-01.dat
key1 value1
key2 value2

Tail has a useful feature in the -f flag which causes tail to watch for changes in the given files and updates the screen
as they occur. This is particularly useful for output files such as those generated by slurm scripts

[skelting1@buddy ~]$ tail -n 2 -f slurm.out
output line 2
output line 3

30 Chapter 5. Using the Terminal

buddy-documentation

later. . .

[skelting1@buddy ~]$ tail -n 2 -f slurm.out
output line2
output line3
output line4

Note: Displaying the contents of a file usually only makes since is that file is plain text; i.e. not a binary file. Catting
out a .bin file will just result in your screen being filled with random nonsense characters

Editing with nano

To begin editing a file with nano pass its file path to the nano command

[skelting1@buddy ~]$ nano data-set-02.dat

Listing 1: data-set-02.dat

1 April 1st subject baseline
2 May 5th subject reports weight loss
3 June 3rd subject reports light-headedness may be due to trial drug
4 June 10th trial discontinued

Navigate using arrow keys and edit the file by typing characters and using backspace like you’d expect. The characters
you type will appear before the currently selected character.

Note: When using the nano editor, command shortcuts appear at the bottom of the screen. These shortcuts can be
confusing if you aren’t familiar with the notation so just remember that ^ refers the Ctrl key and M represents the meta
key also known as the Alt key on windows or the Option on Mac.

Copy, cut, and paste can be achieved by first selecting the desired text. Move the cursor to the first character of the
selection, hold Shift and use the arrow keys to select all desired characters. Then press Alt+6 or Option+6 to copy
or Ctrl+k to cut, move to the desired paste location and press Ctrl+u to paste.

Save using Ctrl+o and exit using Ctrl+x.

Editing with vim

To begin editing a file with nano pass its file path to the vim command

[skelting1@buddy ~]$ vim data-set-02.dat

Listing 2: data-set-02.dat

1 April 1st subject baseline
2 May 5th subject reports weight loss
3 June 3rd subject reports light-headedness may be due to trial drug
4 June 10th trial discontinued

5.4. Common Commands and Features 31

buddy-documentation

Vim uses the concept of “modes” to categorize different kinds of behavior. For instance, typing new portions of a file
must happen within “insert mode”. Understanding how to use and swtich between modes is one of the most important
parts of using vim.

To enter a mode first enter “normal” mode by pressing the ESC key. You can think of this as backing out of whatever
other mode you might already be in. Then press the appropriate key to enter your desired mode.

Tip: If you hit something by mistake and can’t figure out how to get out of it, just spam the ESC key. This will always
get you back to vim’s normal mode and you can get where you want from there. When in doubt, get to normal mode.

Shortcut Mode Description
ESC Normal mode manipulate whole lines and jump into other modes
i Insert mode insert and delete characters like a normal editor
Ctrl+v Block visual mode select character by character and across multiple lines
Shift+v Linewise visual mode select multiple lines
: Command mode type commands to perform various vim functions

To begin editing a file, make sure you’re in normal mode by pressing ESC, enter insert mode by pressing i, and begin
editing.

Cut, copy, and paste can be caried out on entire lines or on selected portions of text.

To copy an entire line, enter normal mode by pressing ESC, navigate the cursor to the desired line, and “yank” the line
with yy. Cut is similar to copy but you “delete” the line with dd instead of “yanking” it. To paste the stored line,
navigate the cursor to a line near where you would like to “put” it and press p to paste the below the current line or
Shift+p to paste above it.

To copy or cut a selection you first need to select some text. To select multiple lines, first be sure you’re in normal mode
by typing ESC, then navigate to the first line you would like to select and enter “linewise visual mode” by pressing
Shift+v. Finally use the up and down arrow keys to select more lines. To select a block of text, first be sure you’re in
normal mode by pressing ESC, then navigate the first character you would like to select and enter “block visual mode”
by pressing Ctrl+v. Finally use the arrow keys to complete your selection.

With some of the text selected you can “yank” (copy) the selection with y or “delete”(cut) it with d. You can “put”(paste)
the selected text using p or Shift+p. If you made the selection using “linewise visual mode” the selection will be pasted
above or below the current line. If you made the selection using “block visual mode” the selection will be pasted before
or after the currently selected character.

To save the current file or exit vim you need to use the appropriate vim commands. Firstly, you need to be sure you
are in normal mode by typing ESC then jump into command mode by typing :. In command mode you can save the
current file by typing the w command and hitting enter. To save and quit type wq and hit enter. You can quit without
saving by just using the q command if you haven’t edited the file otherwise you will have to force vim to exit without
saving by using the q! command.

Pipes

Sometimes you may want to take the output of a command and so something with it like storing it in a file or passing
it to another command; this is where pipes become useful

For example: if you wanted to store the result of the ls command as a file, you could do the following

[skelting1@buddy ~]$ ls > output.txt
[skelting1@buddy ~]$ cat output.txt
data-set-01.dat data-set-02.dat meta

32 Chapter 5. Using the Terminal

buddy-documentation

The > pipe places the output of the previous command into the given file; creating it if it doesn’t already exist and
overwriting it if it does. If you wish to append the command output to the end of the given file instead of overwriting
it use the >> pipe.

[skelting1@buddy ~]$ ls >> output.txt
[skelting1@buddy ~]$ cat output.txt
data-set-01.dat data-set-02.dat meta
[skelting1@buddy ~]$ ls >> output.txt
[skelting1@buddy ~]$ cat output.txt
data-set-01.dat data-set-02.dat meta
data-set-01.dat data-set-02.dat meta

To pass the output of one command as input to another use the | pipe. For example if you only wanted the last two
lines of the ls -a command you could do the following.

[skelting1@buddy ~]$ ls -l
total 16
drwxr-xr-x 2 tdunn3 tdunn3 4096 May 4 11:35 Data_Folder_01
drwxr-xr-x 2 tdunn3 tdunn3 4096 May 4 11:35 'Data Folder 02'
-rw-r--r-- 1 tdunn3 tdunn3 36 May 4 11:34 data-set-01.dat
-rw-r--r-- 1 tdunn3 tdunn3 39 May 4 11:34 data-set-02.dat
[skelting1@buddy ~]$ ls -l | tail -n 2
-rw-r--r-- 1 tdunn3 tdunn3 36 May 4 11:34 data-set-01.dat
-rw-r--r-- 1 tdunn3 tdunn3 39 May 4 11:34 data-set-02.dat

It is common practice to chain multiple commands one after the other using | in order to refine data with successive
commands.

5.4.2 Shortcuts

Command description
!! used within a command will be replaced with your last run command
Ctl+Shift+c copies the selected text in the terminal
Ctl+Shift+v pastes in terminal
Tab completes the portion of text that has already been typed
Up autofills the last command
Home jumps to beginning of line
End jumps to end of line

5.4.3 Searching

grep

The grep command is one of the most useful commands you could have in your arsenal. It’s used to search for words
or patterns within one or multiple files or strings.

To search for lines containing a word or phrase within a file:

[skelting1@buddy ~]$ cat data-set-02.dat
April 1st subject baseline
May 5th subject reports weight loss

(continues on next page)

5.4. Common Commands and Features 33

buddy-documentation

(continued from previous page)

June 3rd subject reports light-headedness may be due to trial drug
June 10th trial discontinued
[skelting1@buddy ~]$ grep data-set-02.dat May
May 5th subject reports weight loss

Grep also works with data piped in from other commands. This is actually a common use case for grep

[skelting1@buddy ~]$ ls -l
total 16
drwxr-xr-x 2 tdunn3 tdunn3 4096 May 4 11:35 Data_Folder_01
drwxr-xr-x 2 tdunn3 tdunn3 4096 May 4 11:35 'Data Folder 02'
-rw-r--r-- 1 tdunn3 tdunn3 36 May 4 11:34 data-set-01.dat
-rw-r--r-- 1 tdunn3 tdunn3 39 May 4 11:34 data-set-02.dat
[skelting1@buddy ~]$ ls -l | grep 02
drwxr-xr-x 2 tdunn3 tdunn3 4096 May 4 11:35 'Data Folder 02'
-rw-r--r-- 1 tdunn3 tdunn3 39 May 4 11:34 data-set-02.dat

Another important use case for grep is listing files that contain a pattern with the -l flag. It is often used with the -i
flag which makes the search case insensative (May is the same as may) and -R which recursivly searches directories.

[skelting1@buddy ~]$ grep -Ril may
data-set-02.dat

Note: To search for patterns that contain spaces you can either “escape” the spaces using back slashes, i.e. my string
becomes my\ string, or you can quote them, my string becomes “my string”. However, quotes can be tricky because
they are designed to search for regular expressions so special characters like .’s and -‘s are treated as instructions. To
search for quoted patterns containing special characters you must “escape” them with back slashes like “my hyper\-
strange expression goes \[HERE\] \.” This forces those characters to be read as “literals” meaning they are treated as
the literal character you typed and not a regular expressrion instruction.

find

The find command is used to find files matching the given pattern

To find files within the current directory and its subdirectories with “02” in the name

[skelting1@buddy ~]$ ls
Data_Folder_01 'Data Folder 02' data-set-01.dat data-set-02.dat
[skelting1@buddy ~]$ find . -name 02
'Data Folder 02' data-set-02.dat

Find is often used with other commands. For example you can find with the type f (regular file) using find’s -type and
then of pass those to grep using the -exec flag to select only those files that contain a certain phrase

[skelting1@buddy ~]$ find . -type f -exec grep -l May {} \;
data-set-02.dat

The {} in the above command will be filled by the output of the rest of the find command. So actual command that
returns the above output is grep -l May data-set-01.dat data-set-02.dat

34 Chapter 5. Using the Terminal

buddy-documentation

5.4.4 File Permissions and Information

Listing file info

The ls -l command provides a lot of useful information.

[skelting1@buddy ~]$ ls -l
total 16
drwxr-xr-x 2 tdunn3 tdunn3 4096 May 4 11:35 Data_Folder_01
drwxr-xr-x 2 tdunn3 tdunn3 4096 May 4 11:35 'Data Folder 02'
-rw-r--r-- 1 tdunn3 tdunn3 36 May 4 11:34 data-set-01.dat
-rw-r--r-- 1 tdunn3 tdunn3 39 May 4 11:34 data-set-02.dat

The first part of each line, drwxr-xr-x, describe the file permissions i.e. who is allowed to do what with this file. The
d means we are looking at a directory and the next nine character correspond to the read(r), write(w), and execute(x)
permissions for the owner the file, the access group, and everyone else respectively. For example, the first file has
permissions of rwxr-xr-xwhich means the owner can read, write and execute(rwx) and the group along with everyone
else can only read and execute(r-x).

The second part counts the number of hard links to the file. If you’re curious you can find more information here

The third and fourth parts correspond to the owner and the group respectively. These are the same owner and group
that are referenced in the first part.

The fourth, fifth, and sixth parts describe the file size, the date the file was created, and its name respectively.

Changing file permissions

The file permissions described in the previous section can be altered with the chmod command. There are two ways to
use this command: the first is easier to understand but bulky while the second is more obscure but also more concise.

The bulky version:

[skelting1@buddy ~]$ chmod u=rwx,g=rx,o=r data-set-02.dat

In the above example u=rwx gives read, write, and execute permissions to the owner of the file, g=rx gives read and
execute permissions to the file’s group and o=r gives read permissions to everyone else.

For the concise version each of the permissions are encoded as powers of two. Read (r) is encoded as 4, write(w) is 2,
execute(x) is 1, and 0 is reserved for no permissions. In the above example, the owner of the file has permissions of
rwx. To express that using the encoded numbers, simply add them together. 4+2+1=7 so rwx is equivalent to 7. Next,
the group has rx permissions so, 4+2=6, rx is equivalent to 6. Finally everyone else only has read permissions so that
is simply 2. The final permissions are written in owner-group-other order so the permissions for this file are written as
762,

[skelting1@buddy ~]$ chmod 762 data-set-02.dat

This method may seem complicated but it is a more direct way of representing permissions and it is much more common
than the first method so you are more likely to see it when searching for command help than the first example. As with
any command, if you use it often enough you will learn it, otherwise don’t be ashamed to look it up.

5.4. Common Commands and Features 35

https://medium.com/@krisbredemeier/the-difference-between-hard-links-and-soft-or-symbolic-links-780149244f7d

buddy-documentation

5.4.5 Compressing and Uncompressing

Compressing a file makes it more portable; both because it can reduce the file size but also because it bundles a directory
of files into a single file.

Probably the easiest way to compress a file is to use the zip command.

[skelting1@buddy ~]$ zip zipped_file.zip my_directory/

To uncompress a zip file use the unzip command.

[skelting1@buddy ~]$ unzip zipped_file.zip

Another popular method for compressing files is the tar command. The tar command has notoriously difficult to
remember flags which has lead to an inside joke among linux users: “Oh so you say you’re a linux expert, but can you
tar a file without looking it up?”. This is mainly because no one uses the command frequently enough to remember
how it works. That being said, it isn’t difficult; just hard to remember so don’t be afraid to refer back to this guide if
you forget because even the experts have to look it up.

[skelting1@buddy ~]$ tar -czvf compressed.tar.gz my_directory/

Technically, tar isn’t a compression tool. It creates archives, called tarballs, which could be compressed but don’t have
to be. These archives essentially bundle different files together into a single file. In the above command the -c flag
creates an archive, -z compresses it using the gzip format, -v displays the progress in the terminal, and -f allows you
to specify the file name of the final tarbal.

Untarring a file can be accomplished as follows:

[skelting1@buddy ~]$ tar -xvf compressed.tar.gz

In the above example: -x extracts the files from the tarbal, -v displays progress in the terminal, and -f allows you to
specify the input file name.

5.4.6 Downloading Files

Downloading files from sources on the internet is a crucial part of modern terminal usage and there are several ways
to accomplish it for different use cases.

Note: Please review the Cluster Usage: Rules and Guidelines section and the Data Transfer section before moving
data onto buddy

wget

Wget is a command line tool for pulling files from a download link. To use it, just navigate to the directory that you
wish the file to be downloaded to, copy the link to your file, and use the following command.

[skelting1@buddy ~]$ cd my_directory
[skelting1@buddy my_directory]$ wget https://www.google.com/images/branding/googlelogo/
→˓2x/googlelogo_light_color_272x92dp.png

This example downloads the google banner image.

36 Chapter 5. Using the Terminal

buddy-documentation

Warning: Since wget allows you to pull data from another source, it can be dangerous. It is important to be
sure your download link is correct, you know what you are downloading and you verify the correct file has been
downloaded

sftp

Sftp is a file transfer protocol with a utility similar to ssh which we discussed in a previous section.

[myuser@mycomputer ~]$ sftp buddyUsername@buddy.uco.edu
sftp>

Note: You are able to use the ls and the cd commands within the sftp prompt so basic navigation is possible.

To move files from your end to buddy first navigate to the directory where your file is and then move the file to buddy
using sftp and the put command.

[myuser@mycomputer ~]$ ls
myfile1.txt myfile2.dat foobar/
[myuser@mycomputer ~]$ sftp buddyUsername@buddy.uco.edu
sftp> put myfile1.txt
Uploading myfile1.txt to /home/buddyUsername/myfile.txt
myfile.txt 100% 236KB 4.5MB/s 00:00

Files can be retrieved from a remote server by connecting to it via sftp and using the get command. The file will be
downloaded to whichever directory you were in when you connected via sftp.

sftp> get myfile1.txt
Fetching /home/buddyUsername/myfile1.txt to myfile1.txt
myfile1.txt 100% 236KB 34.4KB/s 00:06

To leave an sftp session use the exit command.

sftp> exit
[myuser@mycomputer ~]$

git

See github section

5.5 Tips and Tricks

Some rapid fire tips and tricks

1. If you use a command often enough, you will learn it. Otherwise don’t be ashamed to look it up. There is no
point in memorizing something you’ll never use and even experienced linux users look things up regularly so
you’re in good company

2. Tab complete is your friend. Just type enough of something to uniquely identify it and then press tab to fill in
the rest. It saves so much time

5.5. Tips and Tricks 37

buddy-documentation

3. The Home key allows you to jump to the beginning of a line while the End key jumps to the end.

4. If you want to stop a command from running before it finishes or you want to get out of something try pressing
Ctrl+c. This sends a keyborard interrupt which should tell the command to halt

5. When you are first learning the terminal and using different commands it is common to get stuck inside of
something and not know how to get out of it. When this happens it is common practice to spam the keys that
are most commonly used to escape various programs. Try q for quit, ESC for escape, Ctrl+c sends a keyboard
interrupt and should kill the command you are inside of, Ctrl+d sometimes works if Ctrl+c fails, if you are
able to type try typing “exit” or “quit”, and if all else fails just close the terminal window and open a new one;
we’ve all had to do that once or twice

5.6 Basic Bash Scripting

Sometimes you may find that you need to run several commands one after another or even with some additional logic
like branching or loops; this is where scripting becomes useful. The idea is to write down a series of commands within
a logical structure in a file and then execute the file just like a normal program. Scripting makes it possible to handle
complex scenarios in a repeatable way which is why we use them to submit jobs to the cluster using slurm. Though bash
scripts can be executed directly, scripts on Buddy must be run using slurm. See the slurm section for more information.

5.6.1 Hello World

Every script begins with a shebang, #!, followed by the path to the appropriate interpreter which is /bin/bash in this
case so our hello world script will begin like so:

Listing 3: hello_world.sh

1 #!/bin/bash

To print “hello world” to the terminal we can use the echo command. Lines beginning with a hash, #, are comments.
They are not executed by the interpreter and are just for the benefit of anyone reading the code. We will add a comment
to label our simple script.

Listing 4: hello_world.sh

1 #!/bin/bash
2

3 # This statement prints hello world to the terminal
4 echo "hello world"

5.6.2 Basic Logic

Warning: Spaces and newlines are very important parts of the bash syntax. Something as simple as adding a
space or forgetting to add one can cause a difficult to find error so pay attention to leading and trailing spaces in the
following examples

Variables

An essential part of any programming language is how variables are handled.

38 Chapter 5. Using the Terminal

buddy-documentation

Listing 5: variables.sh

1 #!/bin/bash
2

3 # Declare variable in bash. Notice: No space before or after the =
4 my_variable=8
5

6 #reference variable in bash
7 echo $my_variable

It is important to note that variables in bash are untyped. You can treat them as strings that are interpreted depending
on the situation

Branching and Conditions

One of the most ubiquitous and most useful programming structures are branching statements which decide which code
block to run based on the provided condition.

Here are some of the conditions available in bash

condition description
$a -eq $b returns true if a and b are equal (both are numbers)
$a -lt $b returns true if a is less than b (both are numbers)
$a -gt $b returns true if a is greater than b (both are numbers)
$a == $b returns true if a and b are equivalent (both are strings)
$a != $b returns true if a and b are not equivalent (both are strings)
! [condition] returns true if condition is false
-d $a return true if directory at path a exists
-e $a return true if file at path a exists
-r $a return true if file at path a exists and can be read
-w $a return true if file at path a exists and can be written to
-x $a return true if file at path a exists and can be executed
-z “$a” return true if variable a is defined

Bash branches might look a little strange if you have used another programming language like python or java.

Listing 6: branching.sh

1 #!/bin/bash
2

3 # branching. Note the spaces before and after the condition
4 if [condition]
5 then
6 echo condition is true
7 elif [condition2]
8 then
9 echo condition is false and condition2 is true

10 else
11 echo condition and condition2 are false
12 fi

There are a few things to unpack here. Firstly the if block ends with fi. Statement blocks in bash end with the block
name spelled backwards. Secondly after a conditional statement like if and elif the body is declared with a then

5.6. Basic Bash Scripting 39

buddy-documentation

statement. Finally, statements are separated by new lines. However, multiple statements can be declared on the same
line by separating them with a ;. This feature allow us to rewrite the above example in a different way which you do
tend to see if you search for examples online. The style you choose is up to you but here is how the above example
looks making use of ;.

Listing 7: branching.sh

1 #!/bin/bash
2

3 # branching
4 if [condition]; then
5 echo condition is true
6 elif [condition2]; then
7 echo condition is false and condition2 is true
8 else
9 echo condition and condition2 are false

10 fi

Note: conditions in bash can get complicated when you start to branch out to using different “test constructs” like
(()) and [] and unusual operators like -z which checks if a variable is defined. Don’t worry about learning these
until you run into a situation that requires them

Loops

Loops are essential for any programming language and bash has three varieties: while loops, until loops, and for loops.
All loop blocks begin with do and end with done.

Listing 8: loops.sh

1 #!/bin/bash
2

3 ### The following loops are equivalent
4

5 # While loop
6 a=0
7 while [$a -le 5]; do
8 echo a equals: $a
9 ((a=a+1))

10 done
11

12 # until loop
13 a=0
14 until [$a -ge 5]; do
15 echo a equals: $a
16 ((a=a+1))
17 done
18

19 # For loop
20 # Note that the variable "a" after the "for" does not come after a "$".
21 # This is because a is being declared here and is set equal to each
22 # value in the sequence "0 .. 4" one after the other.

(continues on next page)

40 Chapter 5. Using the Terminal

buddy-documentation

(continued from previous page)

23 for a in {0 .. 4} ; do
24 echo a equals: $a
25 done

Note: in the for loop example, .. declare a range from 0 up to and including 4 . If it is equivalent to just typing 0 1 2
3 4 .

5.6.3 Providing Input

Passing input to a script from the command line is as simple as including your input, separated by spaces, after you
invoke the script.

[skelting1@buddy ~]$ sbatch input_example.sh input1 input2 input3 input4

Then each input will be available within your script through number variables along with the name of the script in the
0 number variable.

Listing 9: input_example.sh

1 #!/bin/bash
2

3 echo this script is called: $0
4 echo input one is: $1
5 echo input two is: $2
6 echo input three is: $3
7 echo input four is: $4

All inputs and the name of the script can also be accessed in an array $@.

Listing 10: input_example.sh

1 #!/bin/bash
2

3 echo input command: $@

5.6.4 Troubleshooting

Basic debugging involves:

1. Identifying the error message

2. Determining the source of the bug

3. Fixing the bug

Identifying the error message may or may not be easy depending on how clear the ouptut of your command is and how
much output there is. There is a tendency for error messages to get burried in the output of software if it is poorly
written or simply complex. Take time and read carefully to figure out what the computer is trying to tell you about
what has gone wrong.

5.6. Basic Bash Scripting 41

buddy-documentation

Note: Warnings are different from errors in that they indicate bad practice, outdated commands, or other minor issues
while errors indicate serious issues. They can sometimes hint at the source of an error but that is after you have looked
into any error messages that you find.

Determining the source of the bug usually involves some knowledge of how your program is constructed though some
error messages will tell you the line number that the error occured on (and we are incredibly grateful for that). A
powerful technique is to simply copy the error message (or part of the message) into a web browser and search for
other people who have had the same problem. This is usually the first step if your someone else’s software and is very
common even and especially with professional programmers. Internet searching is a skill in and of itself so we won’t
go into detail except to say that there is plenty of helpful information out there as well plenty of misleading information.
Be careful when following someone’s advice and even then, take precautions, make backups and contact administration
if you are unsure or have any questions.

Fixing the bug is the hard part. If you misidentified the actual error message or the real cause of the error then you
will make a fix and it won’t work or might even break something else. Part of working through this last step is going
back to the previous two and trying something else. Reread the error message, try changing the way you phrase your
search, gather more information, and try again. Debugging can often feel like you’re battling with the computer and
it is refusing to yeild. If you get stuck or have any questions contact administration with your bug and some of the
information you collected and we will try to help you narrow down your issue.

42 Chapter 5. Using the Terminal

CHAPTER

SIX

SLURM

6.1 Terminology

6.1.1 Tasks

A task is a command which is run in parallel by slurm using srun. Tasks can be used to run more than one command
at the same time instead of one after the other, increasing performance

6.1.2 Partitions

Partitions are an organizational structure in slurm which allows nodes to be grouped together and for certain options
and restrictions to be placed on them. We have a few partitions on Buddy:

Tip: this information can be found using the sinfo command in the terminal

Name Time limit Description
general 5 days Used for most jobs
general-long 30 days Used for jobs that are expected to run for a long time
high-mem 5 days Used for jobs which are expected to have high memory usage
high-mem-long 30 days Used for long jobs which are expected to have high memory usage
gpu 5 days Used for gpu jobs
gpu-long 30 days Used for gpu jobs which are expected to run for a long time
testing 2 days Reserved for our internal testing

We recommend that you use the partition that is most appropriate to your application.

6.1.3 Cores

Each node has 20 cores so the product of –tasks-per-node and –cpus-per-task should not exceed 20

43

buddy-documentation

6.2 Commands

sbatch used allocate resource and run the given script using slurm srun used withing an sbatch file to run a command
as a parallel task smap displays the jobs currently running on the cluster sinfo displays information about down and
running nodes aswell as partition information

6.3 Sbatch Parameters

Sbatch parameters are used to control the way jobs are submitted and run on buddy

6.3.1 Common sbatch parameters

Name Environment
variables

Default Description

-J,–job-
name

SLURM_JOB_NAMEscript name or “sbatch” the name of your job

-
o,–output

N/A “slurm-%j.out” file to dump standard output of program

-e,–error N/A “slurm-%j.out” file to dump standard error of program
-
n,–ntasks

N/A 1 unless –cpus-per task is
set

the maximum number of tasks sbatch should allocate
resources for

-
N,–nodes

SLURM_JOB_NUM_NODESenough nodes to satisfy
the -n and -c options

the number of nodes to allocate. A minimum and
maximum can also be set like: –nodes=10-12

-c,–cpus-
per-task

SLURM_CPUS_PER_TASKone processor per task the number of cpus to allocate for each task

–ntasks-
per-node

SLURM_TASKS_PER_NODE? the number of tasks to allocate for on each node

-
p,–partition

SBATCH_PARTITIONgeneral the partition to run the job in

-t,–time SBATCH_TIMELIMITmax time for partition the maximum amount of time the job is allowed to run

44 Chapter 6. Slurm

CHAPTER

SEVEN

COMMON TOOLCHAINS

7.1 Component versions in foss toolchain

foss date binu-
tils

GCC Open
MPI

Flexi-
BLAS

Open-
BLAS

LAPACK ScaLA-
PACK

FFTW

2019a Jan
‘19

2.31.1 8.2.0 3.1.3 (none) 0.3.5 (incl. with Open-
BLAS)

2.0.2 3.3.8

2019b Sept
‘19

2.32 8.3.0 3.1.4 (none) 0.3.7 (incl. with Open-
BLAS)

2.0.2 3.3.8

2020a May
‘20

2.34 9.3.0 4.0.3 (none) 0.3.9 (incl. with Open-
BLAS)

2.1.0 3.3.8

2020b Nov
‘20

2.35 10.2.0 4.0.5 (none) 0.3.12 (incl. with Open-
BLAS)

2.1.0 3.3.8

2021a May
‘21

2.36.1 10.3.0 4.1.1 3.0.4 0.3.15 (incl. with Open-
BLAS)

2.1.0 3.3.9

2021b Oct
‘21

2.37 11.2.0 4.1.1 3.0.4 0.3.18 (incl. with Open-
BLAS)

2.1.0 3.3.10

2022a Jun
‘22

2.38 11.3.0 4.1.4 3.2.0 0.3.20 (incl. with Open-
BLAS)

2.2.0 3.3.10

2022b Dec
‘22

2.39 12.2.0 4.1.4 3.2.1 0.3.21 (incl. with Open-
BLAS)

2.2.0 3.3.10

7.2 Component versions in intel toolchain

intel date binutils GCC Intel compilers Intel MPI Intel MKL
2019a Jan ‘19 2.31.1 8.2.0 2019.1.144 2018.4.274 2019.1.144
2019b Sept ‘19 2.32 8.3.0 2019.5.281 2018.5.288 2019.5.281
2020a May’20 2.34 9.3.0 2020.1.217 2019.7.217 2020.1.217
2020b Nov’20 2.35 10.2.0 2020.4.304 2019.9.304 2020.4.304
2021a May’21 2.36.1 10.3.0 2021.2.0 2021.2.0 2021.2.0
2021b Oct’21 2.37 11.2.0 2021.4.0 2021.4.0 2021.4.0
2022a Jun’22 2.38 11.3.0 2022.1.0 2021.6.0 2022.1.0
2022b Dec’22 2.39 12.2.0 2022.2.1 2021.7.1 2022.2.1

45

buddy-documentation

7.3 Component versions in foss toolchain (deprecated versions)

foss date binu-
tils

GCC Open
MPI

Flexi-
BLAS

Open-
BLAS

LAPACK ScaLA-
PACK

FFTW

2014b Jul
‘14

‘(none) 4.8.3 1.8.1 (none) 0.2.9 3.5.0 2.0.2 3.3.4

2015a Jan
‘15

‘(none) 4.9.2 1.8.4 (none) 0.2.13 3.5.0 2.0.2 3.3.4

2015b Jul
‘15

2.25 4.9.3 1.8.8 (none) 0.2.14 3.5.0 2.0.2 3.3.4

2016a Jan
‘16

2.25 4.9.3 1.10.2 (none) 0.2.15 3.6.0 2.0.2 3.3.4

2016b Jul
‘16

2.26 5.4.0 1.10.3 (none) 0.2.18 3.6.1 2.0.2 3.3.4

2017a Jan
‘17

2.27 6.3.0 2.0.2 (none) 0.2.19 3.7.0 2.0.2 3.3.6(-
pl2)

2017b Jul
‘17

2.28 6.4.0 2.1.1 (none) 0.2.20* (incl. with Open-
BLAS)

2.0.2 3.3.6(-
pl2)

2018a Jan
‘18

2.28 6.4.0 2.1.2 (none) 0.2.20* (incl. with Open-
BLAS)

2.0.2 3.3.7

2018b Jul
‘18

2.30 7.3.0 3.1.1 (none) 0.3.1 (incl. with Open-
BLAS)

2.0.2 3.3.8

7.4 Component versions in intel toolchain (deprecated versions)

intel date binutils GCC Intel compilers Intel MPI Intel MKL
2014b Jul ‘14 ‘(none) 4.8.3 2013.5.192 4.1.3.049 11.1.2.144
2015a Jan ‘15 ‘(none) 4.9.2 2015.1.133 5.0.2.044 11.2.1.133
2015b Jul ‘15 2.25 4.9.3 2015.3.187 5.0.3.048 11.2.3.187
2016a Jan ‘16 2.26 4.9.3 2016.1.150 5.1.2.150 11.3.1.150
2016b Jul ‘16 2.26 5.4.0 2016.3.210 5.1.3.181 11.3.3.210
2017a Jan ‘17 2.27 6.3.0 2017.1.132 2017.1.132 2017.1.132
2017b Jul ‘17 2.28 6.4.0 2017.4.196 2017.3.196 2017.3.196
2018a Jan ‘18 2.28 6.4.0 2018.1.163 2018.1.163 2018.1.163
2018b Jul ‘18 2.30 7.3.0 2018.3.222 2018.3.222 2018.3.222

46 Chapter 7. Common toolchains

CHAPTER

EIGHT

DATA STORAGE

8.1 Home Folder

Every user is given 500Gb of storage in their home directory. If more storage is required consider using scratch storage
or contact administration to see about allocating more space.

8.2 Project Space

If you are working with a group of users you might want to consider using a project space. Upon request we will create
a directory and grant a group of users access to it with one user being the owner. We will also adjust read and write
permissions to suit the needs of your group.

8.3 Scratch Storage

If you have a large amount of data that needs to be stored or if you have data that is generated and doesn’t need to be
stored for a long time consider using scratch storage. Scratch storage is large but volitile to data stored here needs to
be backed up off site or disposible.

47

buddy-documentation

48 Chapter 8. Data Storage

CHAPTER

NINE

DATA TRANSFER

Data transfer to and from buddy can be done in several ways depending on your needs and the size of the data.

9.1 Using SFTP or SCP

Small files can be transfered to and from Buddy using a file transfer protol such as SFTP or SCP however, for files
greater than 2Gb, please use Globus to increase upload speed and to avoid slowing down the cluster for other users.

9.2 Using Github

For source code it might be preferrable to use git to keep data on Buddy synced with a project. This is acomplished by
commiting changes on your local machine, pushing them up to a repository, and pulling the changes down onto Buddy.
However, if the file size is greater than 2Gb, please use Globus to increase upload speed and to avoid slowing down the
cluster for other users.

9.3 Using Globus

For files that are larger than 2Gb, Globus is the prefered method for moving data between the cluster and another source.
This can be accomplished by doing the following:

9.3.1 1. Make an Account and Obtain a Golbus ID

1. Visit globusid.org

2. Click create a Globus ID

3. Fill out account details and for organization be sure to enter “University of Central Oklahoma”

49

https://www.globusid.org/

buddy-documentation

9.3.2 2. Log in with Globus ID

1. Visit globus.org and click Log In in the upper right

2. Click Globus ID to sign in

3. Sign in using your globus username and password. (You may not need sign in if you just created your account
and a login cookie still exists in your browser)

4. If this is your first time logging in:

a. Enter a verification code from your globus verification email

b. Click Continue

c. Click Continue again

5. Click Allow

9.3.3 3. Connect to Buddy

1. Search Buddy in the collection search bar

2. Select Home storage for files smaller than 100Gb otherwise select DTN storage

3. Click Continue

4. Choose to Link an identity from Buddy OIDC SERVER...

5. Sign in using your Buddy username and password

6. Click Allow

You should now be able to access your buddy home folder or DTN storage. The steps to access both are the same.

50 Chapter 9. Data Transfer

https://www.globus.org/

CHAPTER

TEN

ACCOUNT AND SOFTWARE REQUESTS

10.1 General Account Request

A general account is an account made for professors or researchers and their colaborators and is the most given nor-
mal permissions on buddy. To make a general account request please contact administration and provide us with the
following information:

• Requester’s Name

• Requester’s UCO Username (if you are from another university please provide the username provided by your
institution and its name)

• Requester’s Department

• Required software

• Do you need a project space?

– Are there any special permissions required for this directory for example: “I don’t want collaborators
to make files”, “I want collaborators to be able to read and make files”, etc.

• Professor or student

– If professor: Do you have any students you need to add?

∗ Username

∗ Possibly email

• If you are collaborating with UCO faculty please provide the names and email addresses of your collaborators

10.2 Classroom Account Request

A classroom account is one given to students if they will be using Buddy as part of a class. The instructor will be given
a general account while the students will recieve classroom accounts which expire after the class ends and which have
more limited functionality than general accounts. To make a classroom account request please contact administration
and provide us with the following information:

• Class CRN

• Class name

• A two column spreadsheet with student name and student email

• Do you need a shared classroom space?

51

mailto:hpc@uco.edu
mailto:hpc@uco.edu

buddy-documentation

– Are there any special permissions required for this directory for example: “I don’t want students to
make files”, “I want students to be able to read and make files”, etc.

10.3 Software Request

To make a sofware request please contact administration with the name of the software and version information or other
requirements if they exist.

Note: While we try to provide requested software this might not always be possible or may take a long time to work
through installation and integration issues. We will keep you updated as mush as possible throughout the process and
will try to work with you to fulfill your needs. That being said, most software can be installed quickly and easily.

52 Chapter 10. Account and Software Requests

mailto:hpc@uco.edu

CHAPTER

ELEVEN

TIPS AND TRICKS

11.1 Slurm

11.1.1 Use %j-PROJECT.out for output files

When a slurm job is submitted, the job number is printed to the screen. With this naming scheme it is easy to see which
outfile is which and if you’re using a terminal you can copy the job number, paste it in the terminal window, and press
tab to autofill the rest of the file name.

11.1.2 Create general scripts

If you often run the same command with different input files as is common with python, create a general slurm script
that takes in a file path and passes it to that command. For example:

Listing 1: PROJECT_DIR/scripts/job.sh

#!/bin/bash
#SBATCH --job-name=autoencoder
#SBATCH --nodes=1
#SBATCH --cpus-per-task=20
#SBATCH --output=script_outputs/%j-autoencoder.out
#SBATCH --partition=general

script from commandline
script=$1

load required packages
module purge
module load TensorFlow/2.6.0-foss-2021a
module load scikit-learn/0.24.2-foss-2021a
module load matplotlib/3.4.2-foss-2021a

run script
python3 -u $script
echo Finished

Then run sbatch scripts/job.sh PYTHON_SCRIPT from your project directory. This method can also be used to
pass arguments to commands as anything after sbatch job.sh is passed to the script.

53

buddy-documentation

11.2 Python

11.2.1 Use the -u flag

By default python bufferes its outputs. If you use print() for debugging, it may be helpful to have output displayed
imediately instead of being buffered

54 Chapter 11. Tips and Tricks

CHAPTER

TWELVE

OVERVIEW

Note: This section is incomplete. New software pages will be added overtime, however if you encounter any issues
in the mean time, please contact administration.

55

mailto:hpc@uco.edu

buddy-documentation

56 Chapter 12. Overview

CHAPTER

THIRTEEN

ANSYS

57

buddy-documentation

58 Chapter 13. ANSYS

CHAPTER

FOURTEEN

COMSOL

59

buddy-documentation

60 Chapter 14. COMSOL

CHAPTER

FIFTEEN

ANACONDA

15.1 Example Script

#!/bin/bash
#SBATCH --job-name=my-conda-job
#SBATCH --output=%j-my-conda-job.out
#SBATCH --nodes=1

USAGE:
1. Replace your_environment and your_file
2. Submit job

Load modules
module purge # unload all modules
module load Anaconda3/2020.11 # load anaconda

Setup
setup and activate conda environment
source ~/.bashrc # load .bashrc file to setup conda path
conda activate your_environment # activate environment

Run
The -u option forces python output to be unbuffered. Useful for debugging.
python3 -u your_file

61

buddy-documentation

62 Chapter 15. Anaconda

CHAPTER

SIXTEEN

GAUSSIAN

16.1 Example Script

#!/bin/bash
#SBATCH --job-name=g16
#SBATCH --nodes=2
#SBATCH --cpus-per-task=20
#SBATCH --output=g16-%j.out
#SBATCH --partition=general

Of the batch options, it is only recommnded to change "--job-name", "--nodes", and
"--output". Any other modifications may result in an error.

It is only recommneded to change the input file in the Gaussian command. If needed
more g16 options can be added.

If using the job composer, you will need to upload your input files to the job
script's folder. You can do this by clicking on "edit files" and then uploading
your com file.

#Load Gaussian module
module load Gaussian/g16

#Gaussian scratch directory.
export GAUSS_SCRDIR=/home/$USER/.gaustmp/$SLURM_JOBID
mkdir -p $GAUSS_SCRDIR

#Stop OpenMP from interfering with Gaussian's thread mechanism.
export OMP_NUM_THREADS=1

#Prepare node list for Linda
for n in `scontrol show hostname | sort -u`; do
echo ${n}
done | paste -s -d, > snodes.$SLURM_JOBID

#Run Gaussian. It is recommended to only change the input file here. If needed you can
#raise the memory up to 60GB, but doing so may result in an error.
g16 -m=40gb -p=${SLURM_CPUS_PER_TASK} -w=`cat snodes.$SLURM_JOBID` your_file_name.com

#Clean up nodes list
(continues on next page)

63

buddy-documentation

(continued from previous page)

rm snodes.$SLURM_JOBID

64 Chapter 16. Gaussian

CHAPTER

SEVENTEEN

JUPYTER/PYTHON

65

buddy-documentation

66 Chapter 17. Jupyter/Python

CHAPTER

EIGHTEEN

R/RSTUDIO

67

buddy-documentation

68 Chapter 18. R/RStudio

CHAPTER

NINETEEN

STACKS

69

buddy-documentation

70 Chapter 19. Stacks

CHAPTER

TWENTY

OVERVIEW

Note: This section is incomplete. New advanced topics will be added overtime, however if you encounter any issues
in the mean time, please contact administration.

71

mailto:hpc@uco.edu

buddy-documentation

72 Chapter 20. Overview

CHAPTER

TWENTYONE

ADVANCED SLURM

73

buddy-documentation

74 Chapter 21. Advanced Slurm

CHAPTER

TWENTYTWO

ARRAY JOBS

75

buddy-documentation

76 Chapter 22. Array Jobs

CHAPTER

TWENTYTHREE

USING GIT AND GITHUB

77

buddy-documentation

78 Chapter 23. Using Git and Github

CHAPTER

TWENTYFOUR

MACHINE LEARNING

79

buddy-documentation

80 Chapter 24. Machine Learning

CHAPTER

TWENTYFIVE

OMPI

81

buddy-documentation

82 Chapter 25. OMPI

CHAPTER

TWENTYSIX

OURRSTORE

83

	About
	Cluster Usage: Rules and Guidelines
	General Etiquette
	Rules
	1. Do not store sensative information on the cluster
	2. Do not abuse cluster resources

	Guidelines
	1. Avoid running scripts directly
	2. Avoid running jobs on the head node
	3. Use globus to transfer large files onto the cluster
	4. Run jobs in an appropriate partition
	5. Avoid allocating unnecessary recources
	6. Avoid running unnessary jobs
	7. Avoid queueing an extreme number of jobs
	8. Be aware of software licenses

	Connecting to Buddy
	Get an Account
	Connect Through Open Ondemand
	Connect Through SSH

	Open OnDemand
	Access and Login
	Interactive Applications
	Queue
	Number of Hours
	Number of Cores
	Version
	Additonal Modules
	Other Options

	File Browser
	Top Menu
	Navigation Menu
	File Context Menu

	File Editor
	File Options
	Editor Options

	Terminal Access
	Job Management
	View Options
	Job Context Menu

	Job Composer
	Overview
	Creating Job From Template
	Modifying Job Options
	Saving and Managing Templates

	Using the Terminal
	Background
	Accessing the Terminal
	Web browser Access
	SSH Access

	Terminal Basics
	Navigation
	Creating and Deleting Files and Directories
	Copy, Move, and Rename

	Common Commands and Features
	File Viewing/Editing and Pipes
	Viewing
	Editing with nano
	Editing with vim
	Pipes

	Shortcuts
	Searching
	grep
	find

	File Permissions and Information
	Listing file info
	Changing file permissions

	Compressing and Uncompressing
	Downloading Files
	wget
	sftp
	git

	Tips and Tricks
	Basic Bash Scripting
	Hello World
	Basic Logic
	Variables
	Branching and Conditions
	Loops

	Providing Input
	Troubleshooting

	Slurm
	Terminology
	Tasks
	Partitions
	Cores

	Commands
	Sbatch Parameters
	Common sbatch parameters

	Common toolchains
	Component versions in foss toolchain
	Component versions in intel toolchain
	Component versions in foss toolchain (deprecated versions)
	Component versions in intel toolchain (deprecated versions)

	Data Storage
	Home Folder
	Project Space
	Scratch Storage

	Data Transfer
	Using SFTP or SCP
	Using Github
	Using Globus
	1. Make an Account and Obtain a Golbus ID
	2. Log in with Globus ID
	3. Connect to Buddy

	Account and Software Requests
	General Account Request
	Classroom Account Request
	Software Request

	Tips and Tricks
	Slurm
	Use %j-PROJECT.out for output files
	Create general scripts

	Python
	Use the -u flag

	Overview
	ANSYS
	COMSOL
	Anaconda
	Example Script

	Gaussian
	Example Script

	Jupyter/Python
	R/RStudio
	Stacks
	Overview
	Advanced Slurm
	Array Jobs
	Using Git and Github
	Machine Learning
	OMPI
	OURRstore

