

Buddy Docs

Quickstart

	About

	Cluster Usage: Rules and Guidelines
	General Etiquette

	Rules

	Guidelines

	Connecting to Buddy
	Get an Account

	Connect Through Open Ondemand

	Connect Through SSH

General

	Open OnDemand
	Access and Login

	Interactive Applications

	File Browser

	File Editor

	Terminal Access

	Job Management

	Job Composer

	Using the Terminal
	Background

	Accessing the Terminal

	Terminal Basics

	Common Commands and Features

	Tips and Tricks

	Basic Bash Scripting

	Slurm
	Terminology

	Commands

	Sbatch Parameters

	Common toolchains
	Component versions in foss toolchain

	Component versions in intel toolchain

	Component versions in foss toolchain (deprecated versions)

	Component versions in intel toolchain (deprecated versions)

	Data Storage
	Home Folder

	Project Space

	Scratch Storage

	Data Transfer
	Using SFTP or SCP

	Using Github

	Using Globus

	Account and Software Requests
	General Account Request

	Classroom Account Request

	Software Request

	Tips and Tricks
	Slurm

	Python

Software

	Overview

	ANSYS

	COMSOL

	Anaconda
	Example Script

	Gaussian
	Example Script

	Jupyter/Python

	R/RStudio

	Stacks

Advanced

	Overview

	Advanced Slurm

	Array Jobs

	Using Git and Github

	Machine Learning

	OMPI

Other HPC Resources

	OURRstore

About

Buddy is a supercomputer managed by CREIC [https://www.uco.edu/cms/research-centers/creic/] and funded by the National Science Foundation. The following is a break down of our system

Buddy Nodes

	Name

	Quantity

	Node Type

	Cores

	RAM

	Features

	buddy.uco.edu

	1

	Login

	2x8

	64GB

	Open OnDemand

	buddy-##

	31

	Compute

	2x10

	64GB

	Compute

	buddy-high-mem-##

	4

	High Memory

	2x10

	128GB

	High Memory

	Buddy-gpu-##

	2

	GPU

	2x10

	64GB

	Tesla K40

	buddy-dtn-##

	2

	Data Transfer

	2x8

	64GB

	OFFN+Globus

	Storage-ib

	1

	Storage

	2x8

	64GB

	Home/Project Storage

Buddy is being used for both research and education. Research includes projects on machine learning, particle transport, micromixing, stochastic modeling, ecological modeling, bio-informatics, spread of disease, and much more! Buddy also has JupyterLab which is heavily utilized in classroom environments. You can find grant details on the NSF site [https://www.nsf.gov/awardsearch/showAward?AWD_ID=1429702].

Cluster Usage: Rules and Guidelines

General Etiquette

The cluster is a shared resource which we hope will be heavily utilized by anyone who could make use of it. We encourage users to take advantage of this resource while using judgment to avoid inconveniencing other users, overburdening the cluster, or abusing it.

Rules

There are a few rules that must be followed to prevent overburdening or abusing the cluster.

1. Do not store sensative information on the cluster

Buddy is not yet HIPAA compliant. Do not store student grades, individually identifiable health information, or other such sensative information on the cluster at this time.

2. Do not abuse cluster resources

Buddy is intended to support research and learning. Do not use the cluster to mine cryptocurrency, crack passwords, spam emails, or other such intensive and inappropriate activity.

Guidelines

Here are a few guidelines for being considereate on the cluster. If you have any questions please contact administration.

1. Avoid running scripts directly

Buddy uses slurm to schedule jobs and allocate resources. This allows us to ensure every user has enough resources for their application and everyone has the ability to uilize the cluster. Try to work within slurm to allow us to keep buddy healthy and usable for everyone.

2. Avoid running jobs on the head node

If you are accessing buddy via a terminal and not using slurm (see guideline 1) you will initially be working on the head node (hostname buddy). The head node is meant to manage the cluster while compute nodes handle the workload. Please ssh into a compute node (hostname buddy-01,buddy-02,etc.).

3. Use globus to transfer large files onto the cluster

While it is acceptable to use open ondemand, sftp, or scp to transfer data onto the cluster, if the data is over a certain size these methods can overburden the cluster causing a slowdown for all other users. For large files, be sure to utilize our DTNs and Globus. See the data transfer section for more information.

4. Run jobs in an appropriate partition

Slurms jobs on Buddy are run within partitions that are optimized for different use cases. For most applications the general partition is appropriate, however, if your job requires a lot of memory use a high-mem partition or if you exptect your job will need to run for longer than 5 days use a long partition. See slurm partitions for more information.

5. Avoid allocating unnecessary recources

Feel free to allocate enough resources for your application but try not to allocate resources you are not going to need. If you require a large quantity of resources use the appropriate partition or contact administration.

6. Avoid running unnessary jobs

Prefer running multiple tasks within one job over spawning multiple jobs when possible.

7. Avoid queueing an extreme number of jobs

Try to allow enough room in the queue for other users to run their jobs. If you have an application that requires a large number of jobs use the appropriate partition or contact administration.

8. Be aware of software licenses

Some software on buddy requires a software license such as COMSOL. There are only so many licenses which means only a few users can access that software at a time. Keep this in mind and try to give others an opportunity to access the software as well.

Connecting to Buddy

Get an Account

Email administration at hpc@uco.edu and we will create an account for you. Please read the rules and guidelines before using Buddy.

Connect Through Open Ondemand

If you prefer to use a browser you can access Buddy through https://buddy.uco.edu. This will take you to our Open Ondemand page which makes it easy to setup jobs and use graphical software. See Open Ondemand for more information.

Connect Through SSH

If you prefer a terminal you can connect to buddy using ssh. See Using the Terminal for more information.

Open OnDemand

Open OnDemand is our new and improved interface for accessing HPC resources on Buddy. Open OnDemand is developed and maintained by Ohio Supercomputing Center. You can access it by visiting https://buddy.uco.edu. This document describes how to access and use OnDemand and it’s services.

[image: Buddy OnDemand Home Page]

Access and Login

OnDemand can be accessed by visiting https://buddy.uco.edu. You will login using the credentials provided by CREIC. If you do not already have an account, or you require a password reset, please email hpc@uco.edu for assistance. Please note that while the username may match yours at uco, this account is not connected to your UCO credentials.

[image: Buddy OnDemand Login Box]

Interactive Applications

Buddy has a number of interactive applications available for use. You can access them via the interactive apps tab, or by clicking “My Interactive Sessions”

[image: Buddy OnDemand Nav Interactive Apps]
As an example, we will access Jupyter. Below is what the application will most likely look like. We will touch on each of the available options, including the advanced tab.

[image: Buddy OnDemand Nav Interactive Apps]

Queue

Allows you to select the queue your application will run on. General is typical for most jobs. GPU and High Memory are available for specialized work loads, but there are a limited number of nodes with these resources.

Number of Hours

This is the number of hours your interactive application will run for. Please note there is a 48 hour limit on all interactive app jobs. If you require longer runtimes, please utilize a SLURM script.

Number of Cores

Number of cores for your job. You can reserve up to 20, but only use the minimum required. Two is typically best for classroom jobs, and most research jobs. Twenty will reserve the entire node for just that application. This should only be done when absolutely needed.

Version

This selects the version of the application you wish to run. Most often, you will want to pick the latest version, unless you have some need that requires an older revision.

Additonal Modules

Additional modules can be added here. This utilizes LMOD, and will automatically load the user supplied list of modules. Please be sure your modules toolchain version matches the toolchain of your software version. You can read more in the module section about toolchains.

Other Options

Certain applications contain other options. For example, Jupyter let’s you choose between a Lab or Notebook session. Jupyter also offers ready to select module groups like “Data Science”.

File Browser

Ondemand offers a built in file browser. You can access it by going to Files>Home Directory. The file browser has options to upload files, edit text files, general file management, and more all within the web browser! Applications like Filezilla are no longer needed to move data to and from Buddy.

[image: Buddy OnDemand File Browser]

Top Menu

Most file tasks can be performed via the menu in the upper left.

[image: Buddy OnDemand File Browser Top Menu]

	Open in Terminal: Opens your current folder in a terminal via a new tab. The side arrow allows you to select the cluster you want to open the terminal on. At this time, there is only Buddy. So this option is not needed.

	New File: Opens a dialogue to create a new file in the current folder

	New Directory: Opens a dialogue to create a new folder in the current folder

	Upload: Opens a dialogue to upload desired files or folders

	Download: Downloads files or folders that have been selected

	Copy/Move: Opens a dialogue to copy or move files or folders that have been selected

	Delete: Deletes selected files or folders.

Warning

File deletion is permanent on Buddy, both in the file browser and terminal! There is no “trash”. In addition, files cannot be recovered due to the nature of Buddy.

Navigation Menu

The navigation menu allows has additional navigation options that some users may find useful

[image: Buddy OnDemand File Browser Navigation Menu]

	Up Arrow: Goes up a directory

	Path Bar: Shows the path to your present working directory

	Change Directory: Allows for navigation to a specific folder by providing a path

	Copy Path: Copies the path to your present working directory

	Show Owner/Mode: Shows file and folder permissions

	Show dotfiles: Shows hidden files and folders

	Filter: Filter current files and folders by name

File Context Menu

The file context menu provides a number of operations that mose users will find useful

[image: Buddy OnDemand File Browser Context Menu]

	View: Opens text files for viewing in a new window

	Edit: Opens files in the OnDemand text editor in a new tab

	Rename: Opens a dialogue to rename files

	Download: Downloads the file

File Editor

OnDemand has a built in file editor that you can use to modify any text based file. This is perfect for modifying scripts, input data, and a number of other tasks.

[image: Buddy OnDemand File Editor]

There are a number of options available within the editor

File Options

	Save: Saves your currently open file

	Path: Shows the name and location of the file you currently have open

Editor Options

	Key Bindings: Allows for special key bindings

	Default: This option is best for most users as this is the standard set of key bindings to which desktop users are accustom.

	Vim: VIM types bindings, including common modes such as command, insert, replace, and block. This mode is not recommended unless you use VIM.

	Emacs: Emacs type bindings. This mode is not recommended unless you use Emacs.

	Font Size: Size of font displayed within the editor

	Mode: This is typically automatically selected based on your file extension. The mode controls syntax highlighting and can help to discern elements when performing tasks like writing a script.

	Theme: Changes how your text editor looks. Both light and dark themes are available.

	Word Wrap: Marks whether to wrap words. This prevents having to scroll horizontally for extremely long lines.

Terminal Access

A terminal can be accessed by going to Clusters>Buddy Shell Access. This terminal is web based will open a terminal in a new window. This means that applications like Putty are no longer needed to access Buddy.

[image: Buddy OnDemand Terminal]

Much like the text editor, the terminal also has a theme option. To learn more about bash and common Linux commands, see our guide on the terminal and Slurm.

Job Management

Jobs Management can be accessed by going to Jobs>Active Jobs. This allows users to manage their slurm jobs, as well as see jobs from other users running on the cluster. Please see our Slurm section for more information about jobs. Please note that this application is paginated, and you may need to mark to show more entires or click through available pages using the navigation at the bottom.

[image: Buddy OnDemand Active Jobs]

View Options

There are a few options to adjust your current view within the Active Jobs application.

[image: Buddy OnDemand Active Jobs View Options]

	Your Jobs/All Jobs: Toggles wether you want to view only your jobs, or all jobs on the cluster

	All Clusters/Buddy: Chooses which cluster’s active jobs will show. Since there is only one cluster, Buddy, this option is currently irrelevant.

	Filter: Filter displayed jobs via keywords

	Show ## Entries: Change the number of entries to show on a single page

Job Context Menu

All jobs have an associated context menu that can be seen be clicking the arrow next to the job. Note the below screenshot is what will be seen for self owned jobs. Jobs owned by other users will be lacking many of these options as you don’t have permission to modify them.

[image: Buddy OnDemand Active Jobs Context Menu]

	Red Trash Bin: Cancel your current job

	Job Status: Status of your current Slurm job. Possible states include Running, Pending, Completing, and Cancelled. Please see our page on Slurm for more information.

	Open in File Manager: Opens the job working directory in the OnDemand file browser. This makes tasks such as viewing job output more convienent.

	Open in Terminal: Opens the job working directory in the OnDemand terminal

	Delete: Cancels the job selected

Job Composer

The Job Composer can be accessed by going to Jobs>Job Composer and open in a new tab. Job Composer allows for creating and running slurm jobs from within your browser. Some users may find this more convienent than using the terminal to run slurm jobs.

Overview

[image: Buddy OnDemand Job Composer]

The Job Composer’s main screen offers a number of options.

	+New Job: Create a new job from one of the following

	From Default Template: Creates a new job from the default template

	From Template: Creates a new job from a pre-defined template

	From Specified Path: Creates a new job from files within a specified directory

	From Selected Jobs: Copies the currently selected job into a new job.

	Create Template: Create a new template from the current job. There are a few options that need set.

	Path: Path of folder to be used to generate the template

	Name: Name of the job template

	Cluster: Name of the cluster the job will run on by default. Buddy is the only cluster, so this option is irrelevant.

	Notes: Notes for the job written in HTMl markup.

	Edit Files: Open the currently selected job in the file browser to edit and manage job files. You can use this to upload new inoput files or modify job scripts

	Job Options: Opens a dialogue within your current window to set various job options

	Name: Name of your job

	Cluster: Name of the cluster your job will run on. Since we only have one cluster, Buddy, this option is irrelevant.

	Specify Job Script: Specify the name of the script to be executed when the submit button is pressed within the job composer.

	Account: We do not currently use accounting. Please leave this field blank.

	Job Array Specification: Please see Advanced Slurm topics for more information on configuring arrays.

	Open Terminal: Open the current job’s folder in the the terminal. This is a faster option for managing job files for those familiar with bash.

	Submit: Submit the selected job to the cluster

	Stop: Cancel the running of a selected job

	Delete: Delete the current job from job composer

	Job Details: Details regarding the current job. Use the “Job Options” button to modify these fields.

	Submit Script: Details of the script being used. Options in this field include

	Open Editor: Opens the job script in the file editor

	Open Terminal: Opens the job folder in the terminal

	Open Dir: Opens the job folder in the file browser

Creating Job From Template

Here we will look at creating a job from a template. The process is roughly the same for a default template as well. This example will use Gaussian. Please see the Software and Slurm sections of the documentation for details on writing Slurm scripts and how to use your desired application.

	Select “From Template” from the “New Job” menu.

[image: Buddy OnDemand Job Composer Create]

	From the template screen, select the desired template and click “Create New Job” from the right hand pane. For this example, we will select the Gaussian template. Be sure to also set the desired job name. We will ignore the Cluster option, as Buddy is currently the only available cluster.

[image: Buddy OnDemand Job Composer Create]

	We will now need to make some modifications to our script and upload the input file we want. Select your job and click “Edit Files” on the left side. This will open the file browser in a new window. Upload your input files and edit the Slurm script accordingly. Please see the File Browser and File Editor section of the documentation. Please also see the Slurm documentation for writing your script.

[image: Buddy OnDemand Job Composer]

	Once everything is setup, we can click submit job. If everything goes as expected, you should see the job pass through several states, eventually reaching completion. To stop a job, simply press the stop button. Output can be viewed by pressing the “Open Dir” button in the bottom right, or using the edit button in the upper left. Should a job not complete as expected.

Modifying Job Options

Certain job options can be modifying by selecting the desired job and clicking “Job Options”.

[image: Buddy OnDemand Job Composer]

Job options will be opened within your current window.

[image: Buddy OnDemand Job Composer]

	Name: Name of your job

	Cluster: Name of the cluster your job will run on. Since we only have one cluster, Buddy, this option is irrelevant.

	Specify Job Script: Specify the name of the script to be executed when the submit button is pressed within the job composer.

	Account: We do not currently use accounting. Please leave this field blank.

	Job Array Specification: Please see Advanced Slurm topics for more information on configuring arrays.

You can reset any changes made with the reset button, or by clicking back.

Saving and Managing Templates

User’s can save and manage Templates under the “Templates” tab of the Job Composer. System provided Job Composer templates are only available for a limited number of software. We are currently working to add more to OnDemand. Generic Slurm templates are available under the Slurm section and specific templates are available in the SOFTWARE section.

[image: Buddy OnDemand Templates]

New templates can be created either by starting one from scratch or by copying a current template. Template files can aslo be modified from this view.

[image: Buddy OnDemand Templates]

Note

The scope of this section is extremely limited. A more in depth walk through of utilizing the template feature will eventually be provided under the ADVANCED section of this documentation.

	New Template/Copy Template: Create or copy a template for use.

	Path: Path that contains your desired default tmeplate files. They should include a runtime script, relative input files, and manifest.yml. Please note the manifest.yml, while important, is nopt covered in this document. Please view another templates folder to see how this is constructed or email UCO’s HPC support.

	Name: Name of the template

	Cluster: Name of the cluster your job will run on. Since we only have one cluster, Buddy, this option is irrelevant.

	Notes: Notes about the job script template.

	Delete: Delete a selected template. You may only delete user created templates as System Templates are managed by CREIC.

Using the Terminal

The Linux command line is one of two methods for accessing Buddy resources. It’s features, power, and flexibility are essential for those wishing to properly utilize the cluster. While the navigation terminal may seem confusing, many of it’s aspects are straightforward.

Background

When computer first came about, one of the first operating systems to arrive was Unix. It was designed to run as a multi-user system on mainframe computers, with users connecting to it remotely via individual terminals. These terminals were extremely simplistic and consisted primarily of a keyboard and screen.

Compared to graphics, text is very light on resources. Because of this, older machines could run dozens of terminals even across the slowest of networks. Despite the nature of terminals, users were still able to interact with programs quickly and efficiently. The commands were also kept very short to reduce the number of keystrokes needed, which sped up the use of the terminal even more. This speed and efficiency is one reason why this text interface is still widely used today.

When logged into a Unix mainframe via a terminal users still had to manage the sort of file management tasks that you might now perform with a mouse and a couple of windows. Whether creating files, renaming them, putting them into subdirectories or moving them around on disk, users could do everything entirely with a textual interface.

Buddy utilizes an operating system called Linux. While it bears some similarities to Unix, it is most definitely not identical and has many major differences. Buddy’s terminal operates using something called “Bash” for users to communicate via the command line. Bash is widely used on Linux systems, and is well documented. This page will cover some basic functions of Bash, including some simple scripting.

Accessing the Terminal

The terminal can be accessed in one of two ways. One is via the web browser, and the other is via SSH. Upon opening, you will be greeted with a black screen and blinking cursor.

Web browser Access

The easiest way to access the terminal is via OnDemand. Once you are logged in, you can access the terminal by going to Clusters>Buddy Shell Access. This will open up a terminal for you in a new window.

[image: Buddy OnDemand Job Composer]

You will see the terminal in your web browser once you are logged in

[image: Buddy OnDemand Job Composer]

SSH Access

SSH access is also available for users who desire to use a preferred terminal emulator. You can ssh into buddy by connecting to username@buddy.uco.edu. There are few applications available to utilize SSH

Note

Please read the associated documentation for each of these softwares if you desire to use them. Users uncomfortable with this method of access are recommended to use the built in OnDemand terminal mentioned above for SSH and the OnDemand file browser for uploading and downloading files to Buddy.

	Windows

	Powershell [https://docs.microsoft.com/en-us/powershell/scripting/learn/remoting/ssh-remoting-in-powershell-core?view=powershell-7.2]: Powershell is a built in Windows terminal emulator that uses the Powershell language. You can access it via your start menu and connect Buddy by using the command ssh username@buddy.uco.edu. You can exit the ssh prompt by typing exit.

	Putty [https://www.putty.org/]: Putty is a popular option for Windows and can be downloaded from the Putty website.

	MobaXTerm [https://mobaxterm.mobatek.net/]: MobaXTerm is another common software and can be downloaded form the Moba website.

	WinSCP [https://winscp.net/eng/index.php]: WinSCP is a software that is not for SSH, but rather file transfer over SCP.

	OSX

	Terminal [https://www.servermania.com/kb/articles/ssh-mac/]: OSX has it’s own built in terminal emulator. It can be accessed from your utility folder and you can connect to Buddy with the command ssh username@buddy.uco.edu. You can exit the ssh prompt by typing exit.

	Finder [https://support.apple.com/guide/mac-help/connect-mac-shared-computers-servers-mchlp1140/mac]: Your file browser in Mac OS can be used to directly connect Buddy for file transfer. You will want to connect to sftp://username@buddy.uco.edu.

Warning

Filezilla is no longer recommended as it’s installer comes bundled with other software! While the bundled offer is not malicious, this can be considered undesireable as the bundled application is installed in a deceptive manner and can interfere with your anti-virus.

Terminal Basics

This section will teach everyday commands that will be used regularly in the terminal. On a terminal, you don’t have a file browser, word, or any other “GUI” application. But that doesn’t mean it is difficult to use. While there is a learning curve, once common commands are memorized, it’s as easy as riding a bike.

Navigation

Navigating files and folders is a fundamental aspect of using any computer. But within the terminal, we are not automatically shown what we want to see. We have to be more explicit.

Let’s start by viewing the contents of our current folder using the “LiSt” command.

[skelting1@buddy ~]$ ls
batchjob.sh Data_Folder_01 Data Folder 02 slurm_output.txt

You can view the contents of a directory by passing a file path to the “LiSt”

[skelting1@buddy ~]$ ls Data_Folder_01
data-set-01.dat data-set-02.dat meta

Let’s pass a “List” option to our “LiSt” command.

[skelting1@buddy ~]$ ls -l
total 4
-rw-r--r-- 1 skelting1 skelting1 635 Apr 21 13:13 batchjob.sh
drwxr-xr-x 2 skelting1 skelting1 10 Apr 21 11:37 Data_Folder_01
drwxr-xr-x 2 skelting1 skelting1 10 Apr 21 11:37 Data Folder 02
-rw-r--r-- 1 skelting1 skelting1 0 Apr 21 11:37 slurm_output.txt

There’s a lot of information to unpack here. For now, we will share that the date and time shows when a file was modified last.

This is all well and good, but where are we? Let’s “Print (our) Working Directory”

[skelting1@buddy ~]$ pwd
/home/skelting1/

This path is our home folder. The username will of course differ. Your home folder is where all of your files will be stored on Buddy. When you login, this is the first folder you will see. But what if we want to access our other folders? Let’s “Change Directory”

[skelting1@buddy ~]$ cd Data_Folder_01
[skelting1@buddy Data_Folder_01]$ pwd
/home/skelting1/Data_Folder_01

Warning

Linux is CaSe SeNsItIvE! Failure to match case will result in your commands not working.

You’ll notice our prompt changes to show our current folder. Looking even closer, you’ll notice we started with a ~ as our current folder. This is because the ~ is a special symbol to represent our home folder. We can even get back into the home folder by changing our directory to it.

[skelting1@buddy Data_Folder_01]$ cd ~
[skelting1@buddy ~]$ pwd
/home/skelting1/

Neat! But what if we are several folders in and just want to go up a folder? Let’s see how that would work.

[skelting1@buddy ~]$ ls
batchjob.sh Data_Folder_01 Data Folder 02 slurm_output.txt
[skelting1@buddy ~]$ cd Data_Folder_01
[skelting1@buddy Data_Folder_01]$ ls
data-set-01.dat data-set-02.dat meta
[skelting1@buddy Data_Folder_01]$ cd meta
[skelting1@buddy meta]$ ls
info.json
[skelting1@buddy meta]$ pwd
/home/skelting1/~/Data_Folder_01/meta

One option for going up a folder is to give our cd command the absolute path of the parent directory: /home/skelting1/Data_Folder_01/ but, this is highly inefficient. Let’s examine another special folder. We will need to add another option to our “LiSt” command to see what they are.

[skelting1@buddy meta]$ ls -a
. .. info.json

The “All” option for ls shows us some directories we couldn’t see before. One is a directory named . and the other is a directory named represents the current directory, and .. represents the directory above it. Going up a directory is as easy as

[skelting1@buddy meta]$ cd ..
[skelting1@buddy Data_Folder_01]$

With the .. relative path in your tool-belt you can go anywhere by building up a longer path. For example, to jump from a directory to a sibling directory, you could go up a directory and then down with two two separate commands or you can jump directly using one command

[skelting1@buddy meta]$ pwd
/home/skelting1/Data_Folder_01/meta
[skelting1@buddy meta]$ cd ../../Data_Folder_02
[skelting1@buddy Data_Folder_02]$ pwd
/home/skelting1/Data_Folder_02

You’ll notice if you try to change directory to . that nothing really happens. This is the intended behavior as we are changing directory to our current directory. Which of course leaves us in the same place! Let’s go back to our home folder and review a special case you will most likely encounter.

[skelting1@buddy ~]$ ls
batchjob.sh Data_Folder_01 Data Folder 02 slurm_output.txt

You’ll notice that one of our folder names has spaces in it. This is generally not recommended from a convenience standpoint, but it happens often for one reason or another. If we try to cd into this folder, odd things happen.

[skelting1@buddy ~]$ cd Data Folder 02
-bash: cd: Data: No such file or directory

Our cd command only wants to take the first argument. In order to read spaces, we have to use what’s called an “Escape Character”. This is simply a backslash \, not to be confused with the forward-slash / we use for paths. So how is the escape character used?

[skelting1@buddy ~]$ cd Data\ Folder\ 02
[skelting1@buddy Data Folder 02]$

This may not seem intuitive to some users, so there is also the option of putting the path in quotes.

[skelting1@buddy ~]$ cd "Data Folder 02"
[skelting1@buddy Data Folder 02]$

Note

You may find yourself annoyed by having to always type out these paths completely. Thankfully, you can use the Tab key to auto-complete. If you press tab and nothing happens, either there is nothing beginning with that name, there are more than one items starting with that particular set of charachters, or you’ve made a syntax error. You may try hitting Tab three times to show available options. Alternatively, backspace over your command and type ls and/or pwd to ensure you are in the right directory and the item is actually in there.

Creating and Deleting Files and Directories

Often, it is needed to make a new directory. To do this we use the “MaKe DIRectory” command. As previously discussed, it is suggested to not name directories with spaces.

[skelting1@buddy ~]$ mkdir Data_Folder_03
[skelting1@buddy ~]$ ls
batchjob.sh Data_Folder_01 Data Folder 02 Data_Folder_03 slurm_output.txt

To delete a directory, we simply use the “ReMove DIRectory” command.

[skelting1@buddy ~]$ rmdir Data_Folder_03
[skelting1@buddy ~]$ ls
batchjob.sh Data_Folder_01 Data Folder 02 slurm_output.txt

This isn’t always the best option. Especially considering it fails to work of your directory contains file within it. For that reason, the “ReMove” command is generally recommended. This works for both files and directories. Notice that to remove a directory, we must pass a “Recursive” option, but a file doesn’t require it.

[skelting1@buddy ~]$ ls
batchjob.sh Data_Folder_01 Data Folder 02 Data_Folder_03 slurm_output.txt
[skelting1@buddy ~]$ rm slurm_output.txt
[skelting1@buddy ~]$ ls
batchjob.sh Data_Folder_01 Data Folder 02 Data_Folder_03
[skelting1@buddy ~]$ rm -r Data_Folder_03
[skelting1@buddy ~]$ ls
batchjob.sh Data_Folder_01 Data Folder 02

If you want to delete several similarly named files, like output files, you can replace the part that differs between the paths by a star which is called a wildcard.

[skelting1@buddy ~]$ ls
data-001.out data-002.out data-003.out data-004.out foobar.out example.txt
[skelting1@buddy ~]$ rm data-*.out
[skelting1@buddy ~]$ ls
foobar.out example.out

Warning

The rm command is permanent!! There is no trashcan to restore files from, and data recovery is not possible. Please be careful when using this command. Remember, think twice, hit enter once.

You may notice that if the directory is filled with files, it may prompt you about deleting each and every file. If this is the case, we can use the “Force” option.

[skelting1@buddy ~]$ rm -r -f Data_Folder_03

or

[skelting1@buddy ~]$ rm -rf Data_Folder_03

There may be instances when you want to create a blank file. Do do this, we use the touch command

[skelting1@buddy ~]$ touch script.sh
[skelting1@buddy ~]$ ls
batchjob.sh Data_Folder_01 Data Folder 02 script.sh slurm_output.txt

Copy, Move, and Rename

Often times, we want to replicate files and folders on our system. To do this, we use the “CoPy” command. For copying directories that contain files, we also want to include a “Recursive” option. When using copy, we will first specify the source followed by the destination

[skelting1@buddy ~]$ cp script.sh copy-of-script.sh
[skelting1@buddy ~]$ ls
batchjob.sh copy-of-script.sh Data_Folder_01 Data Folder 02 script.sh slurm_output.txt
[skelting1@buddy ~]$ cp -r Data_Folder_01 Data_Folder_04
[skelting1@buddy ~]$ ls
batchjob.sh copy-of-script.sh Data_Folder_01 Data Folder 02 Data_Folder_04 script.sh slurm_output.txt

We can also copy files or directories into other directories

[skelting1@buddy ~]$ cp script.sh Data_Folder_01/script.sh
[skelting1@buddy ~]$ ls Data_Folder_01
data-set-01.dat data-set-02.dat meta script.sh

The “MoVe” command is used to move files from one place to another. Its behavior can change depending on what paths you provide and what those paths go to.

If you provide two paths and the first one exist while the second one does not, the first file will be renamed to the second.

[skelting1@buddy ~]$ ls
batchjob.sh copy-of-script.sh Data_Folder_01 Data Folder 02 script.sh slurm_output.txt
[skelting1@buddy ~]$ mv script.sh foobar.sh
[skelting1@buddy ~]$ ls
batchjob.sh copy-of-script.sh Data_Folder_01 Data Folder 02 foobar.sh slurm_output.txt

Note

If foobar.sh already exists, the command will throw an error. Using the -f flag will allow you to overwrite foobar.sh

This works for directories as well with one exception. If the last path provided is an existing directory, whatever is at all of the other paths will be moved into the directory

[skelting1@buddy ~]$ ls
batchjob.sh copy-of-script.sh Data_Folder_01 Data Folder 02 foobar.sh slurm_output.txt
[skelting1@buddy ~]$ mv batchjob.sh copy-of-script.sh foobar.sh slurm_output.txt Data_Folder_01
[skelting1@buddy ~]$ ls
Data_Folder_01 Data Folder 02
[skelting1@buddy ~]$ ls Data_Folder_01
data-set-01.dat data-set-02.dat meta script.sh batchjob.sh copy-of-script.sh foobar.sh slurm_output.txt

You can also use wildcards to move similarly named paths as well. If you wanted to move your .dat files back out of Data_Folder_1 and into the current working directory you could do the following

[skelting1@buddy ~]$ ls Data_Folder_01
data-set-01.dat data-set-02.dat meta script.sh batchjob.sh copy-of-script.sh foobar.sh slurm_output.txt
[skelting1@buddy ~]$ mv Data_Folder_01/*.dat .
[skelting1@buddy ~]$ ls
data-set-01.dat data-set-01.dat Data_Folder_01 Data Folder 02

Note

Notice the use of the special . path to reference the current working directory

Common Commands and Features

File Viewing/Editing and Pipes

Viewing

Viewing the contents of a file is a common task so there are a couple of commands to do so. The “conCATenate” command is used to display the entire contents of a file

[skelting1@buddy ~]$ cat data-set-01.dat
key1 value1
key2 value2
key3 value3

The name “conCATenate” comes from its ability to join the output of files together. This is evident when viewing the contents of several files at once

[skelting1@buddy ~]$ cat data-set-01.dat data-set-02.dat
key1 value1
key2 value2
key3 value3
other data1
other data2
other data3

You could have also used the wildcard character here: cat *.dat

If you just want to view the beginning or end of a file you can use the head and tail commands respectively. The -n flag specify how many lines you would like to see; defaulting to 10 if the -n flag is omitted

[skelting1@buddy ~]$ tail -n 2 data-set-01.dat
key2 value2
key3 value3
[skelting1@buddy ~]$ head -n 2 data-set-01.dat
key1 value1
key2 value2

Tail has a useful feature in the -f flag which causes tail to watch for changes in the given files and updates the screen as they occur. This is particularly useful for output files such as those generated by slurm scripts

[skelting1@buddy ~]$ tail -n 2 -f slurm.out
output line 2
output line 3

later…

[skelting1@buddy ~]$ tail -n 2 -f slurm.out
output line2
output line3
output line4

Note

Displaying the contents of a file usually only makes since is that file is plain text; i.e. not a binary file. Catting out a .bin file will just result in your screen being filled with random nonsense characters

Editing with nano

To begin editing a file with nano pass its file path to the nano command

[skelting1@buddy ~]$ nano data-set-02.dat

data-set-02.dat

1April 1st subject baseline
2May 5th subject reports weight loss
3June 3rd subject reports light-headedness may be due to trial drug
4June 10th trial discontinued

Navigate using arrow keys and edit the file by typing characters and using backspace like you’d expect. The characters you type will appear before the currently selected character.

Note

When using the nano editor, command shortcuts appear at the bottom of the screen. These shortcuts can be confusing if you aren’t familiar with the notation so just remember that ^ refers the Ctrl key and M represents the meta key also known as the Alt key on windows or the Option on Mac.

Copy, cut, and paste can be achieved by first selecting the desired text. Move the cursor to the first character of the selection, hold Shift and use the arrow keys to select all desired characters. Then press Alt+6 or Option+6 to copy or Ctrl+k to cut, move to the desired paste location and press Ctrl+u to paste.

Save using Ctrl+o and exit using Ctrl+x.

Editing with vim

To begin editing a file with nano pass its file path to the vim command

[skelting1@buddy ~]$ vim data-set-02.dat

data-set-02.dat

1April 1st subject baseline
2May 5th subject reports weight loss
3June 3rd subject reports light-headedness may be due to trial drug
4June 10th trial discontinued

Vim uses the concept of “modes” to categorize different kinds of behavior. For instance, typing new portions of a file must happen within “insert mode”. Understanding how to use and swtich between modes is one of the most important parts of using vim.

To enter a mode first enter “normal” mode by pressing the ESC key. You can think of this as backing out of whatever other mode you might already be in. Then press the appropriate key to enter your desired mode.

Tip

If you hit something by mistake and can’t figure out how to get out of it, just spam the ESC key. This will always get you back to vim’s normal mode and you can get where you want from there. When in doubt, get to normal mode.

	Shortcut

	Mode

	Description

	ESC

	Normal mode

	manipulate whole lines and jump into other modes

	i

	Insert mode

	insert and delete characters like a normal editor

	Ctrl+v

	Block visual mode

	select character by character and across multiple lines

	Shift+v

	Linewise visual mode

	select multiple lines

	:

	Command mode

	type commands to perform various vim functions

To begin editing a file, make sure you’re in normal mode by pressing ESC, enter insert mode by pressing i, and begin editing.

Cut, copy, and paste can be caried out on entire lines or on selected portions of text.

To copy an entire line, enter normal mode by pressing ESC, navigate the cursor to the desired line, and “yank” the line with yy. Cut is similar to copy but you “delete” the line with dd instead of “yanking” it. To paste the stored line, navigate the cursor to a line near where you would like to “put” it and press p to paste the below the current line or Shift+p to paste above it.

To copy or cut a selection you first need to select some text. To select multiple lines, first be sure you’re in normal mode by typing ESC, then navigate to the first line you would like to select and enter “linewise visual mode” by pressing Shift+v. Finally use the up and down arrow keys to select more lines. To select a block of text, first be sure you’re in normal mode by pressing ESC, then navigate the first character you would like to select and enter “block visual mode” by pressing Ctrl+v. Finally use the arrow keys to complete your selection.

With some of the text selected you can “yank” (copy) the selection with y or “delete”(cut) it with d. You can “put”(paste) the selected text using p or Shift+p. If you made the selection using “linewise visual mode” the selection will be pasted above or below the current line. If you made the selection using “block visual mode” the selection will be pasted before or after the currently selected character.

To save the current file or exit vim you need to use the appropriate vim commands. Firstly, you need to be sure you are in normal mode by typing ESC then jump into command mode by typing :. In command mode you can save the current file by typing the w command and hitting enter. To save and quit type wq and hit enter. You can quit without saving by just using the q command if you haven’t edited the file otherwise you will have to force vim to exit without saving by using the q! command.

Pipes

Sometimes you may want to take the output of a command and so something with it like storing it in a file or passing it to another command; this is where pipes become useful

For example: if you wanted to store the result of the ls command as a file, you could do the following

[skelting1@buddy ~]$ ls > output.txt
[skelting1@buddy ~]$ cat output.txt
data-set-01.dat data-set-02.dat meta

The > pipe places the output of the previous command into the given file; creating it if it doesn’t already exist and overwriting it if it does. If you wish to append the command output to the end of the given file instead of overwriting it use the >> pipe.

[skelting1@buddy ~]$ ls >> output.txt
[skelting1@buddy ~]$ cat output.txt
data-set-01.dat data-set-02.dat meta
[skelting1@buddy ~]$ ls >> output.txt
[skelting1@buddy ~]$ cat output.txt
data-set-01.dat data-set-02.dat meta
data-set-01.dat data-set-02.dat meta

To pass the output of one command as input to another use the | pipe. For example if you only wanted the last two lines of the ls -a command you could do the following.

[skelting1@buddy ~]$ ls -l
total 16
drwxr-xr-x 2 tdunn3 tdunn3 4096 May 4 11:35 Data_Folder_01
drwxr-xr-x 2 tdunn3 tdunn3 4096 May 4 11:35 'Data Folder 02'
-rw-r--r-- 1 tdunn3 tdunn3 36 May 4 11:34 data-set-01.dat
-rw-r--r-- 1 tdunn3 tdunn3 39 May 4 11:34 data-set-02.dat
[skelting1@buddy ~]$ ls -l | tail -n 2
-rw-r--r-- 1 tdunn3 tdunn3 36 May 4 11:34 data-set-01.dat
-rw-r--r-- 1 tdunn3 tdunn3 39 May 4 11:34 data-set-02.dat

It is common practice to chain multiple commands one after the other using | in order to refine data with successive commands.

Shortcuts

	Command

	description

	!!

	used within a command will be replaced with your last run command

	Ctl+Shift+c

	copies the selected text in the terminal

	Ctl+Shift+v

	pastes in terminal

	Tab

	completes the portion of text that has already been typed

	Up

	autofills the last command

	Home

	jumps to beginning of line

	End

	jumps to end of line

Searching

grep

The grep command is one of the most useful commands you could have in your arsenal. It’s used to search for words or patterns within one or multiple files or strings.

To search for lines containing a word or phrase within a file:

[skelting1@buddy ~]$ cat data-set-02.dat
April 1st subject baseline
May 5th subject reports weight loss
June 3rd subject reports light-headedness may be due to trial drug
June 10th trial discontinued
[skelting1@buddy ~]$ grep data-set-02.dat May
May 5th subject reports weight loss

Grep also works with data piped in from other commands. This is actually a common use case for grep

[skelting1@buddy ~]$ ls -l
total 16
drwxr-xr-x 2 tdunn3 tdunn3 4096 May 4 11:35 Data_Folder_01
drwxr-xr-x 2 tdunn3 tdunn3 4096 May 4 11:35 'Data Folder 02'
-rw-r--r-- 1 tdunn3 tdunn3 36 May 4 11:34 data-set-01.dat
-rw-r--r-- 1 tdunn3 tdunn3 39 May 4 11:34 data-set-02.dat
[skelting1@buddy ~]$ ls -l | grep 02
drwxr-xr-x 2 tdunn3 tdunn3 4096 May 4 11:35 'Data Folder 02'
-rw-r--r-- 1 tdunn3 tdunn3 39 May 4 11:34 data-set-02.dat

Another important use case for grep is listing files that contain a pattern with the -l flag. It is often used with the -i flag which makes the search case insensative (May is the same as may) and -R which recursivly searches directories.

[skelting1@buddy ~]$ grep -Ril may
data-set-02.dat

Note

To search for patterns that contain spaces you can either “escape” the spaces using back slashes, i.e. my string becomes my\ string, or you can quote them, my string becomes “my string”. However, quotes can be tricky because they are designed to search for regular expressions so special characters like .’s and -‘s are treated as instructions. To search for quoted patterns containing special characters you must “escape” them with back slashes like “my hyper\-strange expression goes \[HERE\] \.” This forces those characters to be read as “literals” meaning they are treated as the literal character you typed and not a regular expressrion instruction.

find

The find command is used to find files matching the given pattern

To find files within the current directory and its subdirectories with “02” in the name

[skelting1@buddy ~]$ ls
Data_Folder_01 'Data Folder 02' data-set-01.dat data-set-02.dat
[skelting1@buddy ~]$ find . -name 02
'Data Folder 02' data-set-02.dat

Find is often used with other commands. For example you can find with the type f (regular file) using find’s -type and then of pass those to grep using the -exec flag to select only those files that contain a certain phrase

[skelting1@buddy ~]$ find . -type f -exec grep -l May {} \;
data-set-02.dat

The {} in the above command will be filled by the output of the rest of the find command. So actual command that returns the above output is grep -l May data-set-01.dat data-set-02.dat

File Permissions and Information

Listing file info

The ls -l command provides a lot of useful information.

[skelting1@buddy ~]$ ls -l
total 16
drwxr-xr-x 2 tdunn3 tdunn3 4096 May 4 11:35 Data_Folder_01
drwxr-xr-x 2 tdunn3 tdunn3 4096 May 4 11:35 'Data Folder 02'
-rw-r--r-- 1 tdunn3 tdunn3 36 May 4 11:34 data-set-01.dat
-rw-r--r-- 1 tdunn3 tdunn3 39 May 4 11:34 data-set-02.dat

The first part of each line, drwxr-xr-x, describe the file permissions i.e. who is allowed to do what with this file. The d means we are looking at a directory and the next nine character correspond to the read(r), write(w), and execute(x) permissions for the owner the file, the access group, and everyone else respectively. For example, the first file has permissions of rwxr-xr-x which means the owner can read, write and execute(rwx) and the group along with everyone else can only read and execute(r-x).

The second part counts the number of hard links to the file. If you’re curious you can find more information here [https://medium.com/@krisbredemeier/the-difference-between-hard-links-and-soft-or-symbolic-links-780149244f7d]

The third and fourth parts correspond to the owner and the group respectively. These are the same owner and group that are referenced in the first part.

The fourth, fifth, and sixth parts describe the file size, the date the file was created, and its name respectively.

Changing file permissions

The file permissions described in the previous section can be altered with the chmod command. There are two ways to use this command: the first is easier to understand but bulky while the second is more obscure but also more concise.

The bulky version:

[skelting1@buddy ~]$ chmod u=rwx,g=rx,o=r data-set-02.dat

In the above example u=rwx gives read, write, and execute permissions to the owner of the file, g=rx gives read and execute permissions to the file’s group and o=r gives read permissions to everyone else.

For the concise version each of the permissions are encoded as powers of two. Read (r) is encoded as 4, write(w) is 2, execute(x) is 1, and 0 is reserved for no permissions. In the above example, the owner of the file has permissions of rwx. To express that using the encoded numbers, simply add them together. 4+2+1=7 so rwx is equivalent to 7. Next, the group has rx permissions so, 4+2=6, rx is equivalent to 6. Finally everyone else only has read permissions so that is simply 2. The final permissions are written in owner-group-other order so the permissions for this file are written as 762,

[skelting1@buddy ~]$ chmod 762 data-set-02.dat

This method may seem complicated but it is a more direct way of representing permissions and it is much more common than the first method so you are more likely to see it when searching for command help than the first example. As with any command, if you use it often enough you will learn it, otherwise don’t be ashamed to look it up.

Compressing and Uncompressing

Compressing a file makes it more portable; both because it can reduce the file size but also because it bundles a directory of files into a single file.

Probably the easiest way to compress a file is to use the zip command.

[skelting1@buddy ~]$ zip zipped_file.zip my_directory/

To uncompress a zip file use the unzip command.

[skelting1@buddy ~]$ unzip zipped_file.zip

Another popular method for compressing files is the tar command. The tar command has notoriously difficult to remember flags which has lead to an inside joke among linux users: “Oh so you say you’re a linux expert, but can you tar a file without looking it up?”. This is mainly because no one uses the command frequently enough to remember how it works. That being said, it isn’t difficult; just hard to remember so don’t be afraid to refer back to this guide if you forget because even the experts have to look it up.

[skelting1@buddy ~]$ tar -czvf compressed.tar.gz my_directory/

Technically, tar isn’t a compression tool. It creates archives, called tarballs, which could be compressed but don’t have to be. These archives essentially bundle different files together into a single file. In the above command the -c flag creates an archive, -z compresses it using the gzip format, -v displays the progress in the terminal, and -f allows you to specify the file name of the final tarbal.

Untarring a file can be accomplished as follows:

[skelting1@buddy ~]$ tar -xvf compressed.tar.gz

In the above example: -x extracts the files from the tarbal, -v displays progress in the terminal, and -f allows you to specify the input file name.

Downloading Files

Downloading files from sources on the internet is a crucial part of modern terminal usage and there are several ways to accomplish it for different use cases.

Note

Please review the Cluster Usage: Rules and Guidelines section and the Data Transfer section before moving data onto buddy

wget

Wget is a command line tool for pulling files from a download link. To use it, just navigate to the directory that you wish the file to be downloaded to, copy the link to your file, and use the following command.

[skelting1@buddy ~]$ cd my_directory
[skelting1@buddy my_directory]$ wget https://www.google.com/images/branding/googlelogo/2x/googlelogo_light_color_272x92dp.png

This example downloads the google banner image.

Warning

Since wget allows you to pull data from another source, it can be dangerous. It is important to be sure your download link is correct, you know what you are downloading and you verify the correct file has been downloaded

sftp

Sftp is a file transfer protocol with a utility similar to ssh which we discussed in a previous section.

[myuser@mycomputer ~]$ sftp buddyUsername@buddy.uco.edu
sftp>

Note

You are able to use the ls and the cd commands within the sftp prompt so basic navigation is possible.

To move files from your end to buddy first navigate to the directory where your file is and then move the file to buddy using sftp and the put command.

[myuser@mycomputer ~]$ ls
myfile1.txt myfile2.dat foobar/
[myuser@mycomputer ~]$ sftp buddyUsername@buddy.uco.edu
sftp> put myfile1.txt
Uploading myfile1.txt to /home/buddyUsername/myfile.txt
myfile.txt 100% 236KB 4.5MB/s 00:00

Files can be retrieved from a remote server by connecting to it via sftp and using the get command. The file will be downloaded to whichever directory you were in when you connected via sftp.

sftp> get myfile1.txt
Fetching /home/buddyUsername/myfile1.txt to myfile1.txt
myfile1.txt 100% 236KB 34.4KB/s 00:06

To leave an sftp session use the exit command.

sftp> exit
[myuser@mycomputer ~]$

git

See github section

Tips and Tricks

Some rapid fire tips and tricks

	If you use a command often enough, you will learn it. Otherwise don’t be ashamed to look it up. There is no point in memorizing something you’ll never use and even experienced linux users look things up regularly so you’re in good company

	Tab complete is your friend. Just type enough of something to uniquely identify it and then press tab to fill in the rest. It saves so much time

	The Home key allows you to jump to the beginning of a line while the End key jumps to the end.

	If you want to stop a command from running before it finishes or you want to get out of something try pressing Ctrl+c. This sends a keyborard interrupt which should tell the command to halt

	When you are first learning the terminal and using different commands it is common to get stuck inside of something and not know how to get out of it. When this happens it is common practice to spam the keys that are most commonly used to escape various programs. Try q for quit, ESC for escape, Ctrl+c sends a keyboard interrupt and should kill the command you are inside of, Ctrl+d sometimes works if Ctrl+c fails, if you are able to type try typing “exit” or “quit”, and if all else fails just close the terminal window and open a new one; we’ve all had to do that once or twice

Basic Bash Scripting

Sometimes you may find that you need to run several commands one after another or even with some additional logic like branching or loops; this is where scripting becomes useful. The idea is to write down a series of commands within a logical structure in a file and then execute the file just like a normal program. Scripting makes it possible to handle complex scenarios in a repeatable way which is why we use them to submit jobs to the cluster using slurm. Though bash scripts can be executed directly, scripts on Buddy must be run using slurm. See the slurm section for more information.

Hello World

Every script begins with a shebang, #!, followed by the path to the appropriate interpreter which is /bin/bash in this case so our hello world script will begin like so:

hello_world.sh

1#!/bin/bash

To print “hello world” to the terminal we can use the echo command. Lines beginning with a hash, #, are comments. They are not executed by the interpreter and are just for the benefit of anyone reading the code. We will add a comment to label our simple script.

hello_world.sh

1#!/bin/bash
2
3# This statement prints hello world to the terminal
4echo "hello world"

Basic Logic

Warning

Spaces and newlines are very important parts of the bash syntax. Something as simple as adding a space or forgetting to add one can cause a difficult to find error so pay attention to leading and trailing spaces in the following examples

Variables

An essential part of any programming language is how variables are handled.

variables.sh

1#!/bin/bash
2
3# Declare variable in bash. Notice: No space before or after the =
4my_variable=8
5
6#reference variable in bash
7echo $my_variable

It is important to note that variables in bash are untyped. You can treat them as strings that are interpreted depending on the situation

Branching and Conditions

One of the most ubiquitous and most useful programming structures are branching statements which decide which code block to run based on the provided condition.

Here are some of the conditions available in bash

	condition

	description

	$a -eq $b

	returns true if a and b are equal (both are numbers)

	$a -lt $b

	returns true if a is less than b (both are numbers)

	$a -gt $b

	returns true if a is greater than b (both are numbers)

	$a == $b

	returns true if a and b are equivalent (both are strings)

	$a != $b

	returns true if a and b are not equivalent (both are strings)

	! [condition]

	returns true if condition is false

	-d $a

	return true if directory at path a exists

	-e $a

	return true if file at path a exists

	-r $a

	return true if file at path a exists and can be read

	-w $a

	return true if file at path a exists and can be written to

	-x $a

	return true if file at path a exists and can be executed

	-z “$a”

	return true if variable a is defined

Bash branches might look a little strange if you have used another programming language like python or java.

branching.sh

 1#!/bin/bash
 2
 3# branching. Note the spaces before and after the condition
 4if [condition]
 5then
 6 echo condition is true
 7elif [condition2]
 8then
 9 echo condition is false and condition2 is true
10else
11 echo condition and condition2 are false
12fi

There are a few things to unpack here. Firstly the if block ends with fi. Statement blocks in bash end with the block name spelled backwards. Secondly after a conditional statement like if and elif the body is declared with a then statement. Finally, statements are separated by new lines. However, multiple statements can be declared on the same line by separating them with a ;. This feature allow us to rewrite the above example in a different way which you do tend to see if you search for examples online. The style you choose is up to you but here is how the above example looks making use of ;.

branching.sh

 1#!/bin/bash
 2
 3# branching
 4if [condition]; then
 5 echo condition is true
 6elif [condition2]; then
 7 echo condition is false and condition2 is true
 8else
 9 echo condition and condition2 are false
10fi

Note

conditions in bash can get complicated when you start to branch out to using different “test constructs” like (()) and [] and unusual operators like -z which checks if a variable is defined. Don’t worry about learning these until you run into a situation that requires them

Loops

Loops are essential for any programming language and bash has three varieties: while loops, until loops, and for loops. All loop blocks begin with do and end with done.

loops.sh

 1#!/bin/bash
 2
 3### The following loops are equivalent
 4
 5# While loop
 6a=0
 7while [$a -le 5]; do
 8 echo a equals: $a
 9 ((a=a+1))
10done
11
12# until loop
13a=0
14until [$a -ge 5]; do
15 echo a equals: $a
16 ((a=a+1))
17done
18
19# For loop
20# Note that the variable "a" after the "for" does not come after a "$".
21# This is because a is being declared here and is set equal to each
22# value in the sequence "0 .. 4" one after the other.
23for a in {0 .. 4} ; do
24 echo a equals: $a
25done

Note

in the for loop example, .. declare a range from 0 up to and including 4 . If it is equivalent to just typing 0 1 2 3 4 .

Providing Input

Passing input to a script from the command line is as simple as including your input, separated by spaces, after you invoke the script.

[skelting1@buddy ~]$ sbatch input_example.sh input1 input2 input3 input4

Then each input will be available within your script through number variables along with the name of the script in the 0 number variable.

input_example.sh

1#!/bin/bash
2
3echo this script is called: $0
4echo input one is: $1
5echo input two is: $2
6echo input three is: $3
7echo input four is: $4

All inputs and the name of the script can also be accessed in an array $@.

input_example.sh

1#!/bin/bash
2
3echo input command: $@

Troubleshooting

	Basic debugging involves:
	
	Identifying the error message

	Determining the source of the bug

	Fixing the bug

Identifying the error message may or may not be easy depending on how clear the ouptut of your command is and how much output there is. There is a tendency for error messages to get burried in the output of software if it is poorly written or simply complex. Take time and read carefully to figure out what the computer is trying to tell you about what has gone wrong.

Note

Warnings are different from errors in that they indicate bad practice, outdated commands, or other minor issues while errors indicate serious issues. They can sometimes hint at the source of an error but that is after you have looked into any error messages that you find.

Determining the source of the bug usually involves some knowledge of how your program is constructed though some error messages will tell you the line number that the error occured on (and we are incredibly grateful for that). A powerful technique is to simply copy the error message (or part of the message) into a web browser and search for other people who have had the same problem. This is usually the first step if your someone else’s software and is very common even and especially with professional programmers. Internet searching is a skill in and of itself so we won’t go into detail except to say that there is plenty of helpful information out there as well plenty of misleading information. Be careful when following someone’s advice and even then, take precautions, make backups and contact administration if you are unsure or have any questions.

Fixing the bug is the hard part. If you misidentified the actual error message or the real cause of the error then you will make a fix and it won’t work or might even break something else. Part of working through this last step is going back to the previous two and trying something else. Reread the error message, try changing the way you phrase your search, gather more information, and try again. Debugging can often feel like you’re battling with the computer and it is refusing to yeild. If you get stuck or have any questions contact administration with your bug and some of the information you collected and we will try to help you narrow down your issue.

Slurm

Terminology

Tasks

A task is a command which is run in parallel by slurm using srun. Tasks can be used to run more than one command at the same time instead of one after the other, increasing performance

Partitions

Partitions are an organizational structure in slurm which allows nodes to be grouped together and for certain options and restrictions to be placed on them. We have a few partitions on Buddy:

Tip

this information can be found using the sinfo command in the terminal

	Name

	Time limit

	Description

	general

	5 days

	Used for most jobs

	general-long

	30 days

	Used for jobs that are expected to run for a long time

	high-mem

	5 days

	Used for jobs which are expected to have high memory usage

	high-mem-long

	30 days

	Used for long jobs which are expected to have high memory usage

	gpu

	5 days

	Used for gpu jobs

	gpu-long

	30 days

	Used for gpu jobs which are expected to run for a long time

	testing

	2 days

	Reserved for our internal testing

We recommend that you use the partition that is most appropriate to your application.

Cores

Each node has 20 cores so the product of –tasks-per-node and –cpus-per-task should not exceed 20

Commands

sbatch used allocate resource and run the given script using slurm
srun used withing an sbatch file to run a command as a parallel task
smap displays the jobs currently running on the cluster
sinfo displays information about down and running nodes aswell as partition information

Sbatch Parameters

Sbatch parameters are used to control the way jobs are submitted and run on buddy

Common sbatch parameters

	Name

	Environment variables

	Default

	Description

	-J,–job-name

	SLURM_JOB_NAME

	script name or “sbatch”

	the name of your job

	-o,–output

	N/A

	“slurm-%j.out”

	file to dump standard output of program

	-e,–error

	N/A

	“slurm-%j.out”

	file to dump standard error of program

	-n,–ntasks

	N/A

	1 unless –cpus-per task is set

	the maximum number of tasks sbatch should allocate
resources for

	-N,–nodes

	SLURM_JOB_NUM_NODES

	enough nodes to satisfy the -n
and -c options

	the number of nodes to allocate. A minimum and
maximum can also be set like: –nodes=10-12

	-c,–cpus-per-task

	SLURM_CPUS_PER_TASK

	one processor per task

	the number of cpus to allocate for each task

	–ntasks-per-node

	SLURM_TASKS_PER_NODE

	?

	the number of tasks to allocate for on each node

	-p,–partition

	SBATCH_PARTITION

	general

	the partition to run the job in

	-t,–time

	SBATCH_TIMELIMIT

	max time for partition

	the maximum amount of time the job is allowed to run

Common toolchains

Component versions in foss toolchain

	foss

	date

	binutils

	GCC

	Open MPI

	FlexiBLAS

	OpenBLAS

	LAPACK

	ScaLAPACK

	FFTW

	2019a

	Jan ‘19

	2.31.1

	8.2.0

	3.1.3

	(none)

	0.3.5

	(incl. with OpenBLAS)

	2.0.2

	3.3.8

	2019b

	Sept ‘19

	2.32

	8.3.0

	3.1.4

	(none)

	0.3.7

	(incl. with OpenBLAS)

	2.0.2

	3.3.8

	2020a

	May ‘20

	2.34

	9.3.0

	4.0.3

	(none)

	0.3.9

	(incl. with OpenBLAS)

	2.1.0

	3.3.8

	2020b

	Nov ‘20

	2.35

	10.2.0

	4.0.5

	(none)

	0.3.12

	(incl. with OpenBLAS)

	2.1.0

	3.3.8

	2021a

	May ‘21

	2.36.1

	10.3.0

	4.1.1

	3.0.4

	0.3.15

	(incl. with OpenBLAS)

	2.1.0

	3.3.9

	2021b

	Oct ‘21

	2.37

	11.2.0

	4.1.1

	3.0.4

	0.3.18

	(incl. with OpenBLAS)

	2.1.0

	3.3.10

	2022a

	Jun ‘22

	2.38

	11.3.0

	4.1.4

	3.2.0

	0.3.20

	(incl. with OpenBLAS)

	2.2.0

	3.3.10

	2022b

	Dec ‘22

	2.39

	12.2.0

	4.1.4

	3.2.1

	0.3.21

	(incl. with OpenBLAS)

	2.2.0

	3.3.10

Component versions in intel toolchain

	intel

	date

	binutils

	GCC

	Intel compilers

	Intel MPI

	Intel MKL

	2019a

	Jan ‘19

	2.31.1

	8.2.0

	2019.1.144

	2018.4.274

	2019.1.144

	2019b

	Sept ‘19

	2.32

	8.3.0

	2019.5.281

	2018.5.288

	2019.5.281

	2020a

	May’20

	2.34

	9.3.0

	2020.1.217

	2019.7.217

	2020.1.217

	2020b

	Nov’20

	2.35

	10.2.0

	2020.4.304

	2019.9.304

	2020.4.304

	2021a

	May’21

	2.36.1

	10.3.0

	2021.2.0

	2021.2.0

	2021.2.0

	2021b

	Oct’21

	2.37

	11.2.0

	2021.4.0

	2021.4.0

	2021.4.0

	2022a

	Jun’22

	2.38

	11.3.0

	2022.1.0

	2021.6.0

	2022.1.0

	2022b

	Dec’22

	2.39

	12.2.0

	2022.2.1

	2021.7.1

	2022.2.1

Component versions in foss toolchain (deprecated versions)

	foss

	date

	binutils

	GCC

	Open MPI

	FlexiBLAS

	OpenBLAS

	LAPACK

	ScaLAPACK

	FFTW

	2014b

	Jul ‘14

	‘(none)

	4.8.3

	1.8.1

	(none)

	0.2.9

	3.5.0

	2.0.2

	3.3.4

	2015a

	Jan ‘15

	‘(none)

	4.9.2

	1.8.4

	(none)

	0.2.13

	3.5.0

	2.0.2

	3.3.4

	2015b

	Jul ‘15

	2.25

	4.9.3

	1.8.8

	(none)

	0.2.14

	3.5.0

	2.0.2

	3.3.4

	2016a

	Jan ‘16

	2.25

	4.9.3

	1.10.2

	(none)

	0.2.15

	3.6.0

	2.0.2

	3.3.4

	2016b

	Jul ‘16

	2.26

	5.4.0

	1.10.3

	(none)

	0.2.18

	3.6.1

	2.0.2

	3.3.4

	2017a

	Jan ‘17

	2.27

	6.3.0

	2.0.2

	(none)

	0.2.19

	3.7.0

	2.0.2

	3.3.6(-pl2)

	2017b

	Jul ‘17

	2.28

	6.4.0

	2.1.1

	(none)

	0.2.20*

	(incl. with OpenBLAS)

	2.0.2

	3.3.6(-pl2)

	2018a

	Jan ‘18

	2.28

	6.4.0

	2.1.2

	(none)

	0.2.20*

	(incl. with OpenBLAS)

	2.0.2

	3.3.7

	2018b

	Jul ‘18

	2.30

	7.3.0

	3.1.1

	(none)

	0.3.1

	(incl. with OpenBLAS)

	2.0.2

	3.3.8

Component versions in intel toolchain (deprecated versions)

	intel

	date

	binutils

	GCC

	Intel compilers

	Intel MPI

	Intel MKL

	2014b

	Jul ‘14

	‘(none)

	4.8.3

	2013.5.192

	4.1.3.049

	11.1.2.144

	2015a

	Jan ‘15

	‘(none)

	4.9.2

	2015.1.133

	5.0.2.044

	11.2.1.133

	2015b

	Jul ‘15

	2.25

	4.9.3

	2015.3.187

	5.0.3.048

	11.2.3.187

	2016a

	Jan ‘16

	2.26

	4.9.3

	2016.1.150

	5.1.2.150

	11.3.1.150

	2016b

	Jul ‘16

	2.26

	5.4.0

	2016.3.210

	5.1.3.181

	11.3.3.210

	2017a

	Jan ‘17

	2.27

	6.3.0

	2017.1.132

	2017.1.132

	2017.1.132

	2017b

	Jul ‘17

	2.28

	6.4.0

	2017.4.196

	2017.3.196

	2017.3.196

	2018a

	Jan ‘18

	2.28

	6.4.0

	2018.1.163

	2018.1.163

	2018.1.163

	2018b

	Jul ‘18

	2.30

	7.3.0

	2018.3.222

	2018.3.222

	2018.3.222

Data Storage

Home Folder

Every user is given 500Gb of storage in their home directory. If more storage is required consider using scratch storage or contact administration to see about allocating more space.

Project Space

If you are working with a group of users you might want to consider using a project space. Upon request we will create a directory and grant a group of users access to it with one user being the owner. We will also adjust read and write permissions to suit the needs of your group.

Scratch Storage

If you have a large amount of data that needs to be stored or if you have data that is generated and doesn’t need to be stored for a long time consider using scratch storage. Scratch storage is large but volitile to data stored here needs to be backed up off site or disposible.

Data Transfer

Data transfer to and from buddy can be done in several ways depending on your needs and the size of the data.

Using SFTP or SCP

Small files can be transfered to and from Buddy using a file transfer protol such as SFTP or SCP however, for files greater than 2Gb, please use Globus to increase upload speed and to avoid slowing down the cluster for other users.

Using Github

For source code it might be preferrable to use git to keep data on Buddy synced with a project. This is acomplished by commiting changes on your local machine, pushing them up to a repository, and pulling the changes down onto Buddy. However, if the file size is greater than 2Gb, please use Globus to increase upload speed and to avoid slowing down the cluster for other users.

Using Globus

For files that are larger than 2Gb, Globus is the prefered method for moving data between the cluster and another source. This can be accomplished by doing the following:

1. Make an Account and Obtain a Golbus ID

	Visit globusid.org [https://www.globusid.org/]

	Click create a Globus ID

	Fill out account details and for organization be sure to enter “University of Central Oklahoma”

2. Log in with Globus ID

	Visit globus.org [https://www.globus.org/] and click Log In in the upper right

	Click Globus ID to sign in

[image: Buddy Globus login]

	Sign in using your globus username and password. (You may not need sign in if you just created your account and a login cookie still exists in your browser)

	If this is your first time logging in:

	Enter a verification code from your globus verification email

	Click Continue

	Click Continue again

	Click Allow

3. Connect to Buddy

	Search Buddy in the collection search bar

[image: Buddy Globus collection search]

	Select Home storage for files smaller than 100Gb otherwise select DTN storage

	Click Continue

	Choose to Link an identity from Buddy OIDC SERVER...

	Sign in using your Buddy username and password

	Click Allow

You should now be able to access your buddy home folder or DTN storage. The steps to access both are the same.

Account and Software Requests

General Account Request

A general account is an account made for professors or researchers and their colaborators and is the most given normal permissions on buddy. To make a general account request please contact administration and provide us with the following information:

	Requester’s Name

	Requester’s UCO Username (if you are from another university please provide the username provided by your institution and its name)

	Requester’s Department

	Required software

	
	Do you need a project space?
	
	Are there any special permissions required for this directory for example: “I don’t want collaborators to make files”, “I want collaborators to be able to read and make files”, etc.

	
	Professor or student
	
	
	If professor: Do you have any students you need to add?
	
	Username

	Possibly email

	If you are collaborating with UCO faculty please provide the names and email addresses of your collaborators

Classroom Account Request

A classroom account is one given to students if they will be using Buddy as part of a class. The instructor will be given a general account while the students will recieve classroom accounts which expire after the class ends and which have more limited functionality than general accounts. To make a classroom account request please contact administration and provide us with the following information:

	Class CRN

	Class name

	A two column spreadsheet with student name and student email

	
	Do you need a shared classroom space?
	
	Are there any special permissions required for this directory for example: “I don’t want students to make files”, “I want students to be able to read and make files”, etc.

Software Request

To make a sofware request please contact administration with the name of the software and version information or other requirements if they exist.

Note

While we try to provide requested software this might not always be possible or may take a long time to work through installation and integration issues. We will keep you updated as mush as possible throughout the process and will try to work with you to fulfill your needs. That being said, most software can be installed quickly and easily.

Tips and Tricks

Slurm

Use %j-PROJECT.out for output files

When a slurm job is submitted, the job number is printed to the screen. With this naming scheme it is easy to see which outfile is which and if you’re using a terminal you can copy the job number, paste it in the terminal window, and press tab to autofill the rest of the file name.

Create general scripts

If you often run the same command with different input files as is common with python, create a general slurm script that takes in a file path and passes it to that command. For example:

PROJECT_DIR/scripts/job.sh

#!/bin/bash
#SBATCH --job-name=autoencoder
#SBATCH --nodes=1
#SBATCH --cpus-per-task=20
#SBATCH --output=script_outputs/%j-autoencoder.out
#SBATCH --partition=general

script from commandline
script=$1

load required packages
module purge
module load TensorFlow/2.6.0-foss-2021a
module load scikit-learn/0.24.2-foss-2021a
module load matplotlib/3.4.2-foss-2021a

run script
python3 -u $script
echo Finished

Then run sbatch scripts/job.sh PYTHON_SCRIPT from your project directory. This method can also be used to pass arguments to commands as anything after sbatch job.sh is passed to the script.

Python

Use the -u flag

By default python bufferes its outputs. If you use print() for debugging, it may be helpful to have output displayed imediately instead of being buffered

Overview

Note

This section is incomplete. New software pages will be added overtime, however if you encounter any issues in the mean time, please contact administration.

ANSYS

COMSOL

Anaconda

Example Script

#!/bin/bash
#SBATCH --job-name=my-conda-job
#SBATCH --output=%j-my-conda-job.out
#SBATCH --nodes=1

USAGE:
1. Replace your_environment and your_file
2. Submit job

Load modules
module purge # unload all modules
module load Anaconda3/2020.11 # load anaconda

Setup
setup and activate conda environment
source ~/.bashrc # load .bashrc file to setup conda path
conda activate your_environment # activate environment

Run
The -u option forces python output to be unbuffered. Useful for debugging.
python3 -u your_file

Gaussian

Example Script

#!/bin/bash
#SBATCH --job-name=g16
#SBATCH --nodes=2
#SBATCH --cpus-per-task=20
#SBATCH --output=g16-%j.out
#SBATCH --partition=general

Of the batch options, it is only recommnded to change "--job-name", "--nodes", and
"--output". Any other modifications may result in an error.

It is only recommneded to change the input file in the Gaussian command. If needed
more g16 options can be added.

If using the job composer, you will need to upload your input files to the job
script's folder. You can do this by clicking on "edit files" and then uploading
your com file.

#Load Gaussian module
module load Gaussian/g16

#Gaussian scratch directory.
export GAUSS_SCRDIR=/home/$USER/.gaustmp/$SLURM_JOBID
mkdir -p $GAUSS_SCRDIR

#Stop OpenMP from interfering with Gaussian's thread mechanism.
export OMP_NUM_THREADS=1

#Prepare node list for Linda
for n in `scontrol show hostname | sort -u`; do
echo ${n}
done | paste -s -d, > snodes.$SLURM_JOBID

#Run Gaussian. It is recommended to only change the input file here. If needed you can
#raise the memory up to 60GB, but doing so may result in an error.
g16 -m=40gb -p=${SLURM_CPUS_PER_TASK} -w=`cat snodes.$SLURM_JOBID` your_file_name.com

#Clean up nodes list
rm snodes.$SLURM_JOBID

Jupyter/Python

R/RStudio

Stacks

Overview

Note

This section is incomplete. New advanced topics will be added overtime, however if you encounter any issues in the mean time, please contact administration.

Advanced Slurm

Array Jobs

Using Git and Github

Machine Learning

OMPI

OURRstore

Index

Example

 _images/ondemand_composer_create_03.png
G Edit Files

_images/ondemand_file_browser.png
00w oushoma

>_open n Terminal [][+ NewFile |

CY) = o

Home Directory

/ home / skeltingl / Documents /

O Show Owner/Mode [J Show Dotfiles Filter:

Showing 4 rows - 0 rows selected

Type T Name ' size Modified at
o - Data Folder 01 E] - 4121/2022 11:37:38 AM
o - Data Folder 02 E] - 4121/2022 11:37:44 AM
o batchjob.sh E] 0Bytes 412112022 11:38:04 AM
o slurm_output.ixt E] 0Bytes 412112022 11:37:55 AM

powered by

OnDemand OnDemand version: v2.0.20

_images/ondemand_composer_create_01.png
From Default Template:
From Template. I
From Specified Path

From Selected Job

_images/ondemand_composer_create_02.png
Show| 10 entries Search: |
Name | Cluster | Source
Default Buddy System Templates

Python Conda Buddy System Templates
Quantum Espresso Buddy System Templates
Stacks Buddy System Templates

Showing 110 5 of 5 entries

Previous . Next

<p>Default Gaussian template. Be sure to upload your input file using
the job composer and change the name of your input fle in the
script.</p>

Job Name:

| Gaussian Benzene |

Cluster:

s /|

Seript Name:

‘ 916_batch.sh ‘

Reset

Selected Template Details

Template location:

/var /www/00d/apps/sys/myjobs/ templates/gaussian

_images/ondemand_file_browser_top_menu.png
>_ open in Teminal [+][+ New File |

CX]) = o |

_images/ondemand_file_editor.png
| e ey Bincings Y o <=~ WECNENNEY V-~ RN ™ IS v > v~ B

1 #1/bin/bash
2 #SBATCH --partition-general

3 #SBATCH --nodes-1

4 #SBATCH --ntask

5 #SBATCH --ntasks-per-node=20

6 #SBATCH --output=%)_cstacks-stdout. txt
7 #SBATCH --error-%)_cstacks-stderr. txt
8 #SBATCH --time-48:00:00

9 #SBATCH --job-name=%)_cstacks

10

11 # Some stuff to provide information at the top of your output
12 echo "Working directory:"

13 pud
14 echo '
15

16 # Purge all available modules and load in stacks
17 module purge

18 module load Stacks/2.53-foss-2019b

19

20 # stacks section. Place all your code below here. Be sure your code has the -p option and it matches the number
21 # of tasks set by --ntasks above.

2 I(staw;s P stacks_file -n 4 -M popmap_file -p 20

2

_images/ondemand_file_browser_context_menu.png
slurm_output.txt n 08y

© View
[Edit

A Rename
& Download

W Delete

_images/ondemand_file_browser_navigation_menu.png
/ home / skeltingl / Documents /

O Show Owner/Mode [J Show Dotfiles Filter:

_images/ondemand_home.png
powered by

OnDemand

UNIVERSITY OF CENTRAL OKLAHOMA

Center for Research
and Education in
Interdisciplinary Computation

Message of the Day

April 2022 - User Notice

Maintenance is scheduled for the first and third Thursday of every month. Jobs should continue to run without interruption.
Jupyter now supports custom conda environments! Simply check advanced and change the version to custom.

VSCode Server has now been added to Buddy! You can access it through your interactive applications. Please note that it s still in beta, and features such as github are not
working. If you notice any issues during use, please email hpc@uco.edu o we can track them.

We are always adding new features and OnDemand applications! If you have any software requests, please let us know at hpc@uco.edu.

‘OnDemand version: v2.0.20

_images/ondemand_job_options_01.png

_images/ondemand_job_options_02.png
Job Options

Name

Gaussian Benzene

Cluster

Buddy

Specify job script

g16_batch.sh

Files larger than 65KB are omitted for the job script field

Account

Account is an optional field. If not set, the account may be auto-set by the submit fttr.

Job array specification

110

Job arrays are optional. e.g. 1-10

nav.xhtml

 Table of Contents

 		
 Buddy Docs

 		
 About

 		
 Cluster Usage: Rules and Guidelines

 		
 General Etiquette

 		
 Rules

 		
 1. Do not store sensative information on the cluster

 		
 2. Do not abuse cluster resources

 		
 Guidelines

 		
 1. Avoid running scripts directly

 		
 2. Avoid running jobs on the head node

 		
 3. Use globus to transfer large files onto the cluster

 		
 4. Run jobs in an appropriate partition

 		
 5. Avoid allocating unnecessary recources

 		
 6. Avoid running unnessary jobs

 		
 7. Avoid queueing an extreme number of jobs

 		
 8. Be aware of software licenses

 		
 Connecting to Buddy

 		
 Get an Account

 		
 Connect Through Open Ondemand

 		
 Connect Through SSH

 		
 Open OnDemand

 		
 Access and Login

 		
 Interactive Applications

 		
 Queue

 		
 Number of Hours

 		
 Number of Cores

 		
 Version

 		
 Additonal Modules

 		
 Other Options

 		
 File Browser

 		
 Top Menu

 		
 Navigation Menu

 		
 File Context Menu

 		
 File Editor

 		
 File Options

 		
 Editor Options

 		
 Terminal Access

 		
 Job Management

 		
 View Options

 		
 Job Context Menu

 		
 Job Composer

 		
 Overview

 		
 Creating Job From Template

 		
 Modifying Job Options

 		
 Saving and Managing Templates

 		
 Using the Terminal

 		
 Background

 		
 Accessing the Terminal

 		
 Web browser Access

 		
 SSH Access

 		
 Terminal Basics

 		
 Navigation

 		
 Creating and Deleting Files and Directories

 		
 Copy, Move, and Rename

 		
 Common Commands and Features

 		
 File Viewing/Editing and Pipes

 		
 Shortcuts

 		
 Searching

 		
 File Permissions and Information

 		
 Compressing and Uncompressing

 		
 Downloading Files

 		
 Tips and Tricks

 		
 Basic Bash Scripting

 		
 Hello World

 		
 Basic Logic

 		
 Providing Input

 		
 Troubleshooting

 		
 Slurm

 		
 Terminology

 		
 Tasks

 		
 Partitions

 		
 Cores

 		
 Commands

 		
 Sbatch Parameters

 		
 Common sbatch parameters

 		
 Common toolchains

 		
 Component versions in foss toolchain

 		
 Component versions in intel toolchain

 		
 Component versions in foss toolchain (deprecated versions)

 		
 Component versions in intel toolchain (deprecated versions)

 		
 Data Storage

 		
 Home Folder

 		
 Project Space

 		
 Scratch Storage

 		
 Data Transfer

 		
 Using SFTP or SCP

 		
 Using Github

 		
 Using Globus

 		
 1. Make an Account and Obtain a Golbus ID

 		
 2. Log in with Globus ID

 		
 3. Connect to Buddy

 		
 Account and Software Requests

 		
 General Account Request

 		
 Classroom Account Request

 		
 Software Request

 		
 Tips and Tricks

 		
 Slurm

 		
 Use %j-PROJECT.out for output files

 		
 Create general scripts

 		
 Python

 		
 Use the -u flag

 		
 Overview

 		
 ANSYS

 		
 COMSOL

 		
 Anaconda

 		
 Example Script

 		
 Gaussian

 		
 Example Script

 		
 Jupyter/Python

 		
 R/RStudio

 		
 Stacks

 		
 Overview

 		
 Advanced Slurm

 		
 Array Jobs

 		
 Using Git and Github

 		
 Machine Learning

 		
 OMPI

 		
 OURRstore

_images/ondemand_template_tab.png
lob Composer

_images/ondemand_template_view.png
+ New Tempiate | &S Copy Template

Shuw‘ 10

~ |entries

Name Cluster

Default Buddy
Gaussian Buddy
Python Conda. Buddy
Quantum Espresso Buddy
Stacks Buddy

Showing 1 10 6 of 6 entries

System Templates

System Templates
System Templates
System Templates

System Templates

Previous . Next

<p>Change these notes by editing the manifest yml in this
template's directory</p>

Job Name:

‘ Example Template

Cluster:

‘ Buddy

Script Name:

‘ ‘main_job.sh

Selected Template Details

Template location:

lnoilelskelt1ngjlbum!ylnz(alsyslllyjnbs/lmp:j

Folder Contents:

_images/ondemand_login.png
@ buddy.uco.edu
This site is asking you to sign in.

Username

skelting1

Password

_images/ondemand_nav_interactive.png
lessi

pril

intenal

pyter nc

Code §
rking. I

2 are aly

Deskiops

IBuddy Desktop

GUIs

I ANSYS Workbench

a COMSOL Multiphysics
© Maxent

® Pycharm
mvMD

Servers

= Jupyter

@ RStudio Server

<1 VSCode Server[BETA]

nputation

ice
ind third Thursday of
anments! Simply check

uddy! You can access |
‘e, please email hpc@:

inDemand applications

_images/ondemand_terminal.png
Host: buddy.uco.edu
Last login: Thu Apr 21 13:23:47 2022 from buddy.uco.edu
ApTil 2022 - User Notice

Maintenance is scheduled for the first and third Thursday of every month. Jobs should continue to Tun without interruption.

Jupyter now supports custom conda environments! Simply check advanced and change the version to custom.

VsCode Server has now been added to Buddy! You can access it through your interactive applications. Please note that it is still in beta
, and features such as github are not working. If you notice any issues during use, please email hpc@uco.edu so we can track them.

We are always adding new features and OnDemand applications! If you have any software requests, please let us know at hpceuco.edu.

[skeltinglebuddy ~]$ [|

_static/file.png

_static/plus.png

_static/logo.png

_static/minus.png

_static/img/globus_login.png
OR

‘ G Sign in with Google

‘ @ Sign in with ORCID iD

Didn't find your organization? Then use Globus ID to sign in. (What's this?)

_static/img/logo.png

_static/img/collection_search_buddy.png
Collection | Buddy|

_static/img/ondemand_active_jobs_context.png
~ | 2210435 buddy/sysidashboard/sys/buddy_rstudio skeltingl buddy-users 00:04:48 general Buddy

buddy/sys/dashboardisys/buddy_rstudio 2210435

Cluster Buddy
Job Id 2210435

Job Name buddy/sys/dashboard/sys/buddy_rstudio
User skeltingl

Account buddy-users

Partition general

State RUNNING

Reason None

Total Nodes 1

Node List buddy-30

Total CPUs 2

Time Limit 1-00:00:00

Time Used 11:58

Memory 0

Output Location:

/home/skelting1/buddy/data/sys/dashboard/batch_connect/sys/buddy_rstudio/output/3ee5604c-3ese -4 28-a6le-0bcde2facec3

5 Open in File Manager >_ Open in Terminal

_static/img/ondemand_active_jobs_view.png
Active Jobs

Show 50 ¢ entries Filter:

_static/img/ondemand_active_jobs.png
© Active Jobs

Job Composer
Active Jobs
Show 50 ¢ entries
D Name
> 19 buddy/sys/dashboard/sys/buddy_jupyter
> 67 buddy/sys/dashboard/sys/buddy_jupyter
> 29 sample_job
> =31 buddy/sys/dashboard/sys/buddy_ansys
> 33 buddy/sys/dashboard/sys/buddy_jupyter
> i34 buddy/sys/dashboard/sys/buddy_ansys

‘Showing 1 to 6 of 6 entries

powered by

OnDemand

User

Account

buddy-users

buddy-users

buddy-users

buddy-users

buddy-users

buddy-users

Time Used

37:26:26

02:53:35

00:47:16

00:31:39

Queue

general

general

general

general

general

general

Status

Cluster

Buddy

Buddy

Buddy

Buddy

Buddy

Buddy

All Jobs ~ | All Clusters ~

Filter:

Actions

‘OnDemand version: v2.0.20

_static/img/ondemand_composer.png
) Centrai Oklahoma

Jobs

+ New Job + ¥ Create Template

Job Details
Job Name:
Show 25 v entries Search:
Gaussian Job

Created

D Cluster Status Submit to:

[— Buddy
Showing 10 1 of 1 entries Previous . Next Account:
Not specified
Script location:

/home/skelting1/buddy/data/sys/myjobs/projects/default/1
Script name:

g16_batch.sh

Folder Contents:
example.com

916_batch.sh

Submit Script

g16_batch.sh
Script contents:
#1/bin/bash

#SBATCH --job-name=g16
#SBATCH - -output=%j-g16.out

_static/img/ondemand_composer_create_01.png
From Default Template:
From Template. I
From Specified Path

From Selected Job

_static/img/ondemand_buddy_jupyter.png
Deskiops

DBuddy Desktop

Gus

I ANSYS Workbench
@ COMSOL Multiphysics
© Maxent

@ Pycharm

mVvMD

Servers

@ RStudio Server

4 VSCode Server[BETA]

Jupyter version: v3.1.2

This app will launch a Jupyter Lab or Notebook server on one or more nodes.

Queue

General v
Queue your job will run on
Jupyter Session Type

Jupyter Lab v
Choose between Jupyter Notebook and Jupyter Lab
Number of hours

2

©

Set the length of time for this job (1-48)
Number of cores

2

©

Set the number of cores for this job (1-20)
Data Science Toolkit

View advanced options

Jupyter version

Jupyter 3.0.16 (Python 3.9.5/FOSS 2021a/GCC 10.3.0) M

This defines the version of Jupyter you want to load

Additional modules

Additional modules you wish to load seperated by spaces. Please be sure to match the
FOSS, GCC, and or Python versions listed with your selected Jupyter version.

* The Jupyter session data for this session can be accessed under the data root
directory.

_static/img/ondemand_buddy_terminal.png
Interactive Apps & My Interactive Sessions

>_Buddy Shell Access

l”l[L)ﬁlE Center for Research
and Education in
Interdisciplinary Computation

_static/img/ondemand_composer_tutorial_01.png
Steps to create a job:

1. Create a new job by copying from an
existing job template directory or a
previously run job directory.

2. Edit the files in the job via the file
explorer.

3. Submit the job and monitor the
progress from the "Job Composer”
index page.

Next

_static/img/ondemand_composer_create_02.png
Show| 10 entries Search: |
Name | Cluster | Source
Default Buddy System Templates

Python Conda Buddy System Templates
Quantum Espresso Buddy System Templates
Stacks Buddy System Templates

Showing 110 5 of 5 entries

Previous . Next

<p>Default Gaussian template. Be sure to upload your input file using
the job composer and change the name of your input fle in the
script.</p>

Job Name:

| Gaussian Benzene |

Cluster:

s /|

Seript Name:

‘ 916_batch.sh ‘

Reset

Selected Template Details

Template location:

/var /www/00d/apps/sys/myjobs/ templates/gaussian

_static/img/ondemand_composer_create_03.png
G Edit Files

_static/img/ondemand_composer_tutorial_04.png
% Job Options. | > Open Terminal

2. Exi: Select an existing job and click here:
1o specify the jobs's server and submit
script.

Next

_static/img/ondemand_composer_tutorial_05.png
> Oven Terminal

2. Edit: Select an existing job and click here
to open a new terminal to the job path.

Next

_static/img/ondemand_composer_tutorial_02.png
+ New Job +

1. Create: Begin by creating a new job from
an existing template, from any arbitrary path
on the file system, or by copying a job you

have already created through the Job
Composer.

Next

_static/img/ondemand_composer_tutorial_03.png
G Edit Files l £ Job Options l > Open Terminal

2. Exii: Select a job and click here to open
the path in the file explorer so you can edit
the jobsfiles.

Next

_static/img/ondemand_composer_tutorial_08.png
Select an existing job and click here to
remove the job from the fst.

Next

_static/img/ondemand_composer_tutorial_09.png
You can also create new job templates from
existing jobs. This way, you can use that job
as atemplate for future jobs. Select the job

in the table to copy, then click "Create
Template" to initate the template creation
process.

Close

_static/img/ondemand_composer_tutorial_06.png
3. Submit: Select an existing job and click
here to submit the job to the batch queue

_static/img/ondemand_composer_tutorial_07.png
Select a running or queued job and click
here to stop the job.

Next

_static/img/ondemand_file_browser.png
00w oushoma

>_open n Terminal [][+ NewFile |

CY) = o

Home Directory

/ home / skeltingl / Documents /

O Show Owner/Mode [J Show Dotfiles Filter:

Showing 4 rows - 0 rows selected

Type T Name ' size Modified at
o - Data Folder 01 E] - 4121/2022 11:37:38 AM
o - Data Folder 02 E] - 4121/2022 11:37:44 AM
o batchjob.sh E] 0Bytes 412112022 11:38:04 AM
o slurm_output.ixt E] 0Bytes 412112022 11:37:55 AM

powered by

OnDemand OnDemand version: v2.0.20

_static/img/ondemand_file_browser_context_menu.png
slurm_output.txt n 08y

© View
[Edit

A Rename
& Download

W Delete

_images/ondemand_buddy_jupyter.png
Deskiops

DBuddy Desktop

Gus

I ANSYS Workbench
@ COMSOL Multiphysics
© Maxent

@ Pycharm

mVvMD

Servers

@ RStudio Server

4 VSCode Server[BETA]

Jupyter version: v3.1.2

This app will launch a Jupyter Lab or Notebook server on one or more nodes.

Queue

General v
Queue your job will run on
Jupyter Session Type

Jupyter Lab v
Choose between Jupyter Notebook and Jupyter Lab
Number of hours

2

©

Set the length of time for this job (1-48)
Number of cores

2

©

Set the number of cores for this job (1-20)
Data Science Toolkit

View advanced options

Jupyter version

Jupyter 3.0.16 (Python 3.9.5/FOSS 2021a/GCC 10.3.0) M

This defines the version of Jupyter you want to load

Additional modules

Additional modules you wish to load seperated by spaces. Please be sure to match the
FOSS, GCC, and or Python versions listed with your selected Jupyter version.

* The Jupyter session data for this session can be accessed under the data root
directory.

_images/ondemand_buddy_terminal.png
Interactive Apps & My Interactive Sessions

>_Buddy Shell Access

l”l[L)ﬁlE Center for Research
and Education in
Interdisciplinary Computation

_images/ondemand_active_jobs_context.png
~ | 2210435 buddy/sysidashboard/sys/buddy_rstudio skeltingl buddy-users 00:04:48 general Buddy

buddy/sys/dashboardisys/buddy_rstudio 2210435

Cluster Buddy
Job Id 2210435

Job Name buddy/sys/dashboard/sys/buddy_rstudio
User skeltingl

Account buddy-users

Partition general

State RUNNING

Reason None

Total Nodes 1

Node List buddy-30

Total CPUs 2

Time Limit 1-00:00:00

Time Used 11:58

Memory 0

Output Location:

/home/skelting1/buddy/data/sys/dashboard/batch_connect/sys/buddy_rstudio/output/3ee5604c-3ese -4 28-a6le-0bcde2facec3

5 Open in File Manager >_ Open in Terminal

_images/ondemand_active_jobs_view.png
Active Jobs

Show 50 ¢ entries Filter:

_images/ondemand_composer.png
) Centrai Oklahoma

Jobs

+ New Job + ¥ Create Template

Job Details
Job Name:
Show 25 v entries Search:
Gaussian Job

Created

D Cluster Status Submit to:

[— Buddy
Showing 10 1 of 1 entries Previous . Next Account:
Not specified
Script location:

/home/skelting1/buddy/data/sys/myjobs/projects/default/1
Script name:

g16_batch.sh

Folder Contents:
example.com

916_batch.sh

Submit Script

g16_batch.sh
Script contents:
#1/bin/bash

#SBATCH --job-name=g16
#SBATCH - -output=%j-g16.out

_static/img/ondemand_home.png
powered by

OnDemand

UNIVERSITY OF CENTRAL OKLAHOMA

Center for Research
and Education in
Interdisciplinary Computation

Message of the Day

April 2022 - User Notice

Maintenance is scheduled for the first and third Thursday of every month. Jobs should continue to run without interruption.
Jupyter now supports custom conda environments! Simply check advanced and change the version to custom.

VSCode Server has now been added to Buddy! You can access it through your interactive applications. Please note that it s still in beta, and features such as github are not
working. If you notice any issues during use, please email hpc@uco.edu o we can track them.

We are always adding new features and OnDemand applications! If you have any software requests, please let us know at hpc@uco.edu.

‘OnDemand version: v2.0.20

_static/img/ondemand_job_options_01.png

_static/img/ondemand_file_browser_top_menu.png
>_ open in Teminal [+][+ New File |

CX]) = o |

_static/img/ondemand_file_editor.png
| e ey Bincings Y o <=~ WECNENNEY V-~ RN ™ IS v > v~ B

1 #1/bin/bash
2 #SBATCH --partition-general

3 #SBATCH --nodes-1

4 #SBATCH --ntask

5 #SBATCH --ntasks-per-node=20

6 #SBATCH --output=%)_cstacks-stdout. txt
7 #SBATCH --error-%)_cstacks-stderr. txt
8 #SBATCH --time-48:00:00

9 #SBATCH --job-name=%)_cstacks

10

11 # Some stuff to provide information at the top of your output
12 echo "Working directory:"

13 pud
14 echo '
15

16 # Purge all available modules and load in stacks
17 module purge

18 module load Stacks/2.53-foss-2019b

19

20 # stacks section. Place all your code below here. Be sure your code has the -p option and it matches the number
21 # of tasks set by --ntasks above.

2 I(staw;s P stacks_file -n 4 -M popmap_file -p 20

2

_images/globus_login.png
OR

‘ G Sign in with Google

‘ @ Sign in with ORCID iD

Didn't find your organization? Then use Globus ID to sign in. (What's this?)

_static/img/ondemand_nav_interactive.png
lessi

pril

intenal

pyter nc

Code §
rking. I

2 are aly

Deskiops

IBuddy Desktop

GUIs

I ANSYS Workbench

a COMSOL Multiphysics
© Maxent

® Pycharm
mvMD

Servers

= Jupyter

@ RStudio Server

<1 VSCode Server[BETA]

nputation

ice
ind third Thursday of
anments! Simply check

uddy! You can access |
‘e, please email hpc@:

inDemand applications

_images/ondemand_active_jobs.png
© Active Jobs

Job Composer
Active Jobs
Show 50 ¢ entries
D Name
> 19 buddy/sys/dashboard/sys/buddy_jupyter
> 67 buddy/sys/dashboard/sys/buddy_jupyter
> 29 sample_job
> =31 buddy/sys/dashboard/sys/buddy_ansys
> 33 buddy/sys/dashboard/sys/buddy_jupyter
> i34 buddy/sys/dashboard/sys/buddy_ansys

‘Showing 1 to 6 of 6 entries

powered by

OnDemand

User

Account

buddy-users

buddy-users

buddy-users

buddy-users

buddy-users

buddy-users

Time Used

37:26:26

02:53:35

00:47:16

00:31:39

Queue

general

general

general

general

general

general

Status

Cluster

Buddy

Buddy

Buddy

Buddy

Buddy

Buddy

All Jobs ~ | All Clusters ~

Filter:

Actions

‘OnDemand version: v2.0.20

_static/img/ondemand_template_tab.png
lob Composer

_static/img/ondemand_job_options_02.png
Job Options

Name

Gaussian Benzene

Cluster

Buddy

Specify job script

g16_batch.sh

Files larger than 65KB are omitted for the job script field

Account

Account is an optional field. If not set, the account may be auto-set by the submit fttr.

Job array specification

110

Job arrays are optional. e.g. 1-10

_images/collection_search_buddy.png
Collection | Buddy|

_static/img/ondemand_login.png
@ buddy.uco.edu
This site is asking you to sign in.

Username

skelting1

Password

_static/img/ondemand_template_view.png
+ New Tempiate | &S Copy Template

Shuw‘ 10

~ |entries

Name Cluster

Default Buddy
Gaussian Buddy
Python Conda. Buddy
Quantum Espresso Buddy
Stacks Buddy

Showing 1 10 6 of 6 entries

System Templates

System Templates
System Templates
System Templates

System Templates

Previous . Next

<p>Change these notes by editing the manifest yml in this
template's directory</p>

Job Name:

‘ Example Template

Cluster:

‘ Buddy

Script Name:

‘ ‘main_job.sh

Selected Template Details

Template location:

lnoilelskelt1ngjlbum!ylnz(alsyslllyjnbs/lmp:j

Folder Contents:

_static/img/ondemand_file_browser_navigation_menu.png
/ home / skeltingl / Documents /

O Show Owner/Mode [J Show Dotfiles Filter:

_static/img/ondemand_terminal.png
Host: buddy.uco.edu
Last login: Thu Apr 21 13:23:47 2022 from buddy.uco.edu
ApTil 2022 - User Notice

Maintenance is scheduled for the first and third Thursday of every month. Jobs should continue to Tun without interruption.

Jupyter now supports custom conda environments! Simply check advanced and change the version to custom.

VsCode Server has now been added to Buddy! You can access it through your interactive applications. Please note that it is still in beta
, and features such as github are not working. If you notice any issues during use, please email hpc@uco.edu so we can track them.

We are always adding new features and OnDemand applications! If you have any software requests, please let us know at hpceuco.edu.

[skeltinglebuddy ~]$ [|

